419 research outputs found

    Every metric space is separable in function realizability

    Get PDF
    We first show that in the function realizability topos every metric space is separable, and every object with decidable equality is countable. More generally, working with synthetic topology, every T0T_0-space is separable and every discrete space is countable. It follows that intuitionistic logic does not show the existence of a non-separable metric space, or an uncountable set with decidable equality, even if we assume principles that are validated by function realizability, such as Dependent and Function choice, Markov's principle, and Brouwer's continuity and fan principles

    An Effect System for Algebraic Effects and Handlers

    Full text link
    We present an effect system for core Eff, a simplified variant of Eff, which is an ML-style programming language with first-class algebraic effects and handlers. We define an expressive effect system and prove safety of operational semantics with respect to it. Then we give a domain-theoretic denotational semantics of core Eff, using Pitts's theory of minimal invariant relations, and prove it adequate. We use this fact to develop tools for finding useful contextual equivalences, including an induction principle. To demonstrate their usefulness, we use these tools to derive the usual equations for mutable state, including a general commutativity law for computations using non-interfering references. We have formalized the effect system, the operational semantics, and the safety theorem in Twelf

    First Steps in Synthetic Computability Theory

    Get PDF
    AbstractComputability theory, which investigates computable functions and computable sets, lies at the foundation of computer science. Its classical presentations usually involve a fair amount of Gödel encodings which sometime obscure ingenious arguments. Consequently, there have been a number of presentations of computability theory that aimed to present the subject in an abstract and conceptually pleasing way. We build on two such approaches, Hyland's effective topos and Richman's formulation in Bishop-style constructive mathematics, and develop basic computability theory, starting from a few simple axioms. Because we want a theory that resembles ordinary mathematics as much as possible, we never speak of Turing machines and Gödel encodings, but rather use familiar concepts from set theory and topology

    Instance reducibility and Weihrauch degrees

    Full text link
    We identify a notion of reducibility between predicates, called instance reducibility, which commonly appears in reverse constructive mathematics. The notion can be generally used to compare and classify various principles studied in reverse constructive mathematics (formal Church's thesis, Brouwer's Continuity principle and Fan theorem, Excluded middle, Limited principle, Function choice, Markov's principle, etc.). We show that the instance degrees form a frame, i.e., a complete lattice in which finite infima distribute over set-indexed suprema. They turn out to be equivalent to the frame of upper sets of truth values, ordered by the reverse Smyth partial order. We study the overall structure of the lattice: the subobject classifier embeds into the lattice in two different ways, one monotone and the other antimonotone, and the ¬¬\lnot\lnot-dense degrees coincide with those that are reducible to the degree of Excluded middle. We give an explicit formulation of instance degrees in a relative realizability topos, and call these extended Weihrauch degrees, because in Kleene-Vesley realizability the ¬¬\lnot\lnot-dense modest instance degrees correspond precisely to Weihrauch degrees. The extended degrees improve the structure of Weihrauch degrees by equipping them with computable infima and suprema, an implication, the ability to control access to parameters and computation of results, and by generally widening the scope of Weihrauch reducibility

    Runners in action

    Full text link
    Runners of algebraic effects, also known as comodels, provide a mathematical model of resource management. We show that they also give rise to a programming concept that models top-level external resources, as well as allows programmers to modularly define their own intermediate "virtual machines". We capture the core ideas of programming with runners in an equational calculus λcoop\lambda_{\mathsf{coop}}, which we equip with a sound and coherent denotational semantics that guarantees the linear use of resources and execution of finalisation code. We accompany λcoop\lambda_{\mathsf{coop}} with examples of runners in action, provide a prototype language implementation in OCaml, as well as a Haskell library based on λcoop\lambda_{\mathsf{coop}}.Comment: ESOP 2020 final version + online appendi

    On the Failure of Fixed-Point Theorems for Chain-complete Lattices in the Effective Topos

    Full text link
    In the effective topos there exists a chain-complete distributive lattice with a monotone and progressive endomap which does not have a fixed point. Consequently, the Bourbaki-Witt theorem and Tarski's fixed-point theorem for chain-complete lattices do not have constructive (topos-valid) proofs

    A non-commutative Priestley duality

    Get PDF
    We prove that the category of left-handed strongly distributive skew lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a non-commutative version of classical Priestley duality for distributive lattices and generalizes the recent development of Stone duality for skew Boolean algebras. From the point of view of skew lattices, Leech showed early on that any strongly distributive skew lattice can be embedded in the skew lattice of partial functions on some set with the operations being given by restriction and so-called override. Our duality shows that there is a canonical choice for this embedding. Conversely, from the point of view of sheaves over Boolean spaces, our results show that skew lattices correspond to Priestley orders on these spaces and that skew lattice structures are naturally appropriate in any setting involving sheaves over Priestley spaces.Comment: 20 page

    Canonical Effective Subalgebras of Classical Algebras as Constructive Metric Completions

    Get PDF
    We prove general theorems about unique existence of effective subalgebras of classical algebras. The theorems are consequences of standard facts about completions of metric spaces within the framework of constructive mathematics, suitably interpreted in realizability models. We work with general realizability models rather than with a particular model of computation. Consequently, all the results are applicable in various established schools of computability, such as type 1 and type 2 effectivity, domain representations, equilogical spaces, and others

    Computable decision making on the reals and other spaces via partiality and nondeterminism

    Full text link
    Though many safety-critical software systems use floating point to represent real-world input and output, programmers usually have idealized versions in mind that compute with real numbers. Significant deviations from the ideal can cause errors and jeopardize safety. Some programming systems implement exact real arithmetic, which resolves this matter but complicates others, such as decision making. In these systems, it is impossible to compute (total and deterministic) discrete decisions based on connected spaces such as R\mathbb{R}. We present programming-language semantics based on constructive topology with variants allowing nondeterminism and/or partiality. Either nondeterminism or partiality suffices to allow computable decision making on connected spaces such as R\mathbb{R}. We then introduce pattern matching on spaces, a language construct for creating programs on spaces, generalizing pattern matching in functional programming, where patterns need not represent decidable predicates and also may overlap or be inexhaustive, giving rise to nondeterminism or partiality, respectively. Nondeterminism and/or partiality also yield formal logics for constructing approximate decision procedures. We implemented these constructs in the Marshall language for exact real arithmetic.Comment: This is an extended version of a paper due to appear in the proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS) in July 201
    • …
    corecore