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Abstract

Computability theory, which investigates computable functions and computable sets, lies at the
foundation of computer science. Its classical presentations usually involve a fair amount of Gödel
encodings which sometime obscure ingenious arguments. Consequently, there have been a num-
ber of presentations of computability theory that aimed to present the subject in an abstract
and conceptually pleasing way. We build on two such approaches, Hyland’s effective topos and
Richman’s formulation in Bishop-style constructive mathematics, and develop basic computability
theory, starting from a few simple axioms. Because we want a theory that resembles ordinary
mathematics as much as possible, we never speak of Turing machines and Gödel encodings, but
rather use familiar concepts from set theory and topology.
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1 Introduction

Classical presentations of the theory of computable functions and computably
enumerable sets [3,9,15,19] start by describing one or more equivalent mod-
els of computation, such as Turing machines or schemata for defining partial
recursive functions. Descriptions of Turing machines and numerous uses of
Gödel encodings give classical computability theory its distinguishing flavor,
which one needs to get used to before one can appreciate the ingenious con-
structions that are unique to computability theory. There are also presenta-
tions of computability as an abstract theory that proceeds from basic axioms,
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with as few explicit references to Turing machines and Gödel encodings as pos-
sible [13,8,6], where in most cases the axiomatizations take as the primitive
notion the computation of a program on a given input, or a similar concept.

A different approach to computability theory is to work in a mathematical
universe with computability built in, such as M. Hyland’s effective topos [10] or
P. Mulry’s [14] recursive topos. In these settings, details about computations
are hidden by a level of abstraction, so instead of fiddling with Turing machines
and Gödel codes, one uses abstract tools, namely category theory, to achieve
the desired results. How this can be done was shown by D.S. Scott, P. Mulry
[14], M. Hyland [10], D. McCarty [12], G. Rosolini [18], and others.

We are going to draw on experience from the effective topos and synthetic
domain theory, in particular on G. Rosolini’s work [18]. However, instead of
working explicitly with the topos, which requires a certain amount of knowl-
edge of category theory in addition to familiarity with computability theory,
we shall follow F. Richman and D. Bridges [17,2], and work within ordinary
(constructive) set theory enriched with few simple axioms about sets and
sequences of natural numbers. Because one of our axioms contradicts Aris-
totle’s Law of Excluded Middle, the underlying logic and set theory must be
intuitionistic. Arguably, main-stream mathematicians consider intuitionistic
mathematics to be more exotic than computability theory. This opinion is
countered by the claim that intuitionistic logic is the natural mathematical
foundation for computer science. The present paper supports this view by
developing computability theory in an intuitionistic setting.

Our goal is to develop a theory of computability synthetically: we work
in a mathematical universe in which all sets and functions come equipped
with intrinsic computability structure. Precisely because computability is om-
nipresent, we never have to speak about it—there will be no mention of Turing
machines, or any other notion of computation. In the synthetic universe, the
computable functions are simply all the functions, the computably enumerable
sets are all the enumerable sets, etc. So we may just speak about ordinary
sets and functions and never worry about which ones are computable. For ex-
ample, there is no question about what the computable real numbers should
be, or how to define computability on a complicated mathematical structure.
We just do “ordinary” math—in an extraordinary universe.

You may wonder how exactly such a universe is manufactured. The prime
model of our theory is the effective topos. Its existence guarantees that the
theory is as consistent as the rest of mathematics. In fact, the specialists will
recognize it all as just clever use of the internal language of the effective topos.
Knowledge of topos theory or the effective topos is not needed to understand
synthetic computability, although familiarity with it will certainly help explain
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some of the axioms and constructions.

The intended audience for synthetic computability is manifold, as there
are several communities interested in computability. The constructive mathe-
maticians should have no trouble understanding the matter, since it is written
in their language, although the ascetic ones may find the extra axioms unac-
ceptable. The classical computability theorists are a target audience whose
approval will be the difficult to win. This is so because considerable effort
is required when one first switches from classical to constructive logic, so the
payoff needs to be noteworthy. A second reason is that synthetic computabil-
ity has not been developed far enough to approach current research topics in
computability theory. Hopefully, some experts in computability theory will be
convinced that synthetic computability is a useful supplemental tool. Com-
puter scientists tend to be more open-minded than mathematicians, so they
need not worry us too much.

When an old subject is reformulated in a new way, as is the case here,
success may be claimed to a lesser degree if the new formulation leads to a
more elegant account, and to a larger degree when it leads to new results.
The readers will be the judges of the first criterion, while it is too early to say
much about the second one.

The rest of the paper is organized as follows. Section 2 reviews a few
points about constructive mathematics. Section 3 sets up the basic theory of
enumerable sets and semidecidable truth values. Section 4 develops the begin-
nings of synthetic computability theory. A selection of standard theorems in
computability is proved, among others: Single Value Theorem, Enumerability
Theorem for partial recursive functions, non-existence of a computable enu-
meration of total recursive functions, Projection Theorem, Post’s Theorem,
existence of computably enumerable non-recursive set, existence of insepara-
ble, creative, simple and immune sets, Recursion Theorem, Berger’s Branching
Lemma, Rice-Shapiro, and Myhill-Shepherdson Theorems. Some of these are
generalized, and the formulation of Recursion Theorem is new.

Acknowledgement

I thank Giuseppe Rosolini, Alex Simpson, and Dieter Spreen for fruitful dis-
cussions and valuable advice.

2 Constructive Mathematics

The foundation of synthetic computability is constructive mathematics. This
is not a philosophical decision or a matter of opinion. Aristotle’s Law of
Excluded Middle contradicts one of the axioms of synthetic computability,

A. Bauer / Electronic Notes in Theoretical Computer Science 155 (2006) 5–31 7



which gives us no choice but to abandon classical logic.

We work in the internal language of a topos, or Bishop-style constructive
mathematics. Our logic is intuitionistic, all quantifiers are bounded by sets,
and the members Ai of a family of sets

{
Ai

∣∣ i ∈ I
}

must all be contained in
a previously constructed set A. An example of a formal system that suits our
needs is Zermelo set theory, as presented by P. Taylor [21, §2.2]. We do not
employ impredicativity in an essential way, and most results could be done in
a weaker system based on first-order logic.

Occasionally, we shall speak of the “computational interpretation” of this
or that concept, and refer to computations and Gödel codes. Such excursions
into classical computability theory are only meant to motivate and clarify
what we are doing. The theory proper really does speak only about ordinary
sets and functions, and does not rely in any way on classical computability
theory.

We presuppose the existence of the set of natural numbers N, which satisfies
the usual Peano axioms. We let 1 = {�} be the singleton set containing
precisely one element �. We define N+ to be the set of monotone binary
sequences,

N
+ =

{
f ∈ 2N

∣∣ ∀n∈N . (f(n) = 1 =⇒ f(n + 1) = 1)
}

.

There is an injection i : N → N
+ which maps n to i(n) = λk : N . (n ≤ k).

We identify i(n) with n and view N as a subset of N+. The elements i(n) are
the finite points of N

+. The constantly zero sequence λk : N . 0 is an element
of N+ but not of N. We call it infinity and denote it by ∞. A picture of N+ is
that of a one-point compactification of N. The set N+ is ordered by the “less
than” relation <, defined as

f < g ⇐⇒ ∃ k∈N . (f(k) = 1 ∧ g(k) = 0) .

It is irreflexive, asymmetric, transitive and linear, in the sense that f < g

implies h < f or g < h, for all f, g, h ∈ N+. When restricted to N, < is the
usual “less than” relation. For every n ∈ N we have n < ∞, as expected.
If n ∈ N and g ∈ N+, the proposition i(n) < g is decidable because it is
equivalent to g(n) = 0. Similarly, ≤ on N

+ is defined by

f ≤ g ⇐⇒ ¬(g < f) ⇐⇒ ∀ k ∈N . (f(k) = 0 =⇒ g(k) = 0) .

The set N
+ is the generic converging sequence and will be useful in proving

the Rice-Shapiro and Myhill-Shepherdson theorems.
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2.1 Truth values

We identify a truth value p with its extension
{
u ∈ 1

∣∣ p
}
, which is a subset

of 1. This way the set of truth values is simply the powerset of 1, Ω =
P1. Falsehood ⊥ and truth � are elements of Ω, represented by ∅ and 1,
respectively. Classically, ⊥ and � are the only elements of Ω. Intuitionistically,
this is not the case, but neither is it the case that there is a truth value that
differs from both ⊥ and �.

There are various interesting subsets of Ω. For example, we may consider
the set of decidable truth values, which are those that satisfy the Law of
Excluded Middle,

2 =
{
p ∈ Ω

∣∣ p ∨ ¬p
}

.

Certainly ⊥ and � are decidable truth values. Now if p ∨ ¬p then p = � or
p = ⊥, so we see that 2 does not contain any other elements. We have given
it a good name, also because 2 = 1 + 1. When ⊥ and � are seen as elements
of 2 we prefer to denote them by 0 and 1, respectively. The set 2 is a Boolean
algebra whose operations ∧ and ∨ are inherited from Ω.

Another distinguished subset of Ω, which is related to classical logic, is the
set of classical truth values:

Ω¬¬ =
{
p ∈ Ω

∣∣ ¬¬p =⇒ p
}

.

The elements of Ω¬¬ are those truth values whose truth may be established by
reductio ad absurdum: if ¬p implies falsehood then p holds. Because reductio
ad absurdum implies classical logic we call the elements of Ω¬¬ “classical”.
This is not standard terminology, but we really do want to avoid the standard
awkward phrase “¬¬-stable truth values”, which expresses the fact that ¬¬
is a closure operator on Ω and that Ω¬¬ is the set of its fixed points. While Ω
is only a complete Heyting algebra, Ω¬¬ is also a complete Boolean algebra.

The decidable truth values ⊥ and � are classical, thus 2 ⊆ Ω¬¬ ⊆ Ω.
In 3.3 we shall define a third subset of Ω which plays a central role in synthetic
computability.

A predicate P ⊆ A may be equivalently expressed by a characteristic func-
tion χP : A → Ω. Too see this, notice that PA ∼= P(A × 1) ∼= (P1)A = ΩA.
Propositional functions which map into a distinguished subset of Ω, such
as 2 or Ω¬¬, determine special kinds of predicates. For example, a func-
tion p : A → 2 represents a subset S =

{
x ∈ A

∣∣ p(x) = �
}

which satis-
fies ∀ x∈A . (x ∈ S ∨ x �∈ S). Such predicates and subsets are called decid-
able. Computationally we may view a decidable predicate as one for which
there exists a computable decision procedure. A function p : A → Ω¬¬

represents a classical predicate or subset S ⊆ A. Such a subset satisfies
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∀ x∈A . (¬¬(x ∈ S) =⇒ x ∈ S).

When equality on a set has a special property, we usually give it a name.
Thus a set A is decidable if equality on A is a decidable predicate:

∀ x, y ∈A . (x = y ∨ x �= y) .

The following sets are decidable: natural numbers, a subset of a decidable set,
the cartesian product and the sum of decidable sets.

Similarly, a set A is classical if equality on A is a classical predicate:

∀ x, y ∈A . (¬(x �= y) =⇒ x = y) .

Every decidable set is also classical, but the converse need not hold. A subset
of a classical set is classical.

Beware of a possible terminological confusion: a “decidable subset” is a
subset whose membership predicate is decidable, whereas a “decidable set”
is one whose equality is decidable. Thus it is easy to muddle matters when
we speak about a subset with decidable equality. The same caveat stands for
“classical subsets”.

2.2 Axiom of Choice

In constructive mathematics the axiom of choice is handled with some care.
We say that choice holds for sets A and B, written AC(A, B), when every
total relation between A and B has a choice function:

∀R ⊆ A × B .
(
(∀ x∈A . ∃ y ∈B . R(x, y))

=⇒ ∃ f ∈BA . ∀ x∈A . R(x, f(x))
)

.

A set A is projective when AC(A, B) holds for every set B. In classical set
theory the axiom of choice states that all sets are projective. We are going to
be much more restrictive because of the following computational explanation:
a set A is projective when every element of A has a canonical Gödel code.
Thus we would expect N to be projective, since in the standard Gödel coding
of N each number is represented canonically just by itself, but we would not
expect NN to be projective, because we cannot effectively choose a canonical
Gödel code for each total recursive function (do you know why?).

In Bishop’s constructive mathematics, the natural numbers are indeed pre-
sumed to be projective. This is known as Number Choice.

Axiom 2.1 (Number Choice) The set of natural numbers N is projective.
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In fact, Bishop’s mathematics adopts Dependent Choice, which is the fol-
lowing strengthening of Number Choice.

Axiom 2.2 (Dependent Choice) If R is a total relation on A and x ∈ A

then there exists f : N → A such that f(0) = x and R(f(n), f(n + 1)) for all
n ∈ N.

The computational justification for Dependent Choice goes like this. To
say that R is effectively total means that from a Gödel code m for y ∈ A we
can compute a Gödel code n for some z ∈ A such that R(y, z). Now if k is a
Gödel code for x, start by defining f(0) = x and g(0) = k. Then if f(i) = y is
already defined and g(i) = m is a Gödel code for y, compute a Gödel code n

of some z such that R(y, z), then define f(i + 1) = z and g(i + 1) = n. This
gives us the desired choice function f .

We observe that Number Choice and Dependent Choice are compatible
with classical mathematics.

3 Enumerable and Semidecidable Sets

We now embark properly on the subject of computability theory. Unlike
in most classical treatments of computability theory, we do not start with
partial recursive functions but rather with computably enumerable sets. This
is so because in our settings the computably enumerable sets are simply the
enumerable sets, while some effort is needed to introduce the partial recursive
functions.

3.1 Finite lists and finite sets

We quickly review the basic constructive theory of finite sequences and finite
sets. Computationally speaking, a set is finite if we can compute a finite se-
quence of Gödel codes of its elements, where some elements may be represented
more than once.

For a natural number n ∈ N, define the set {1, . . . , n} =
{
k ∈ N

∣∣ k ≤ n
}
.

A (finite) list, or a finite sequence of elements in A is a map � : {1, . . . , n} → A

for some n ∈ N. The number n is called the length of � and is denoted by |�|.
We write a list � by [�(1), . . . , �(n)]. Given x ∈ A we may form a new list x::�
whose first element is x followed by elements of �. Every list is either empty or
of the form x::� for unique x and �. The set of all finite sequences of elements
of A is denoted by Seq A.

A set A is finite if there exists n ∈ N and a surjection e : {1, . . . , n} → A,
called a listing of A. The collection of all finite subsets of A is denoted
by PfinA. There is a quotient map Seq A → PfinA which assigns to a list � its
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image im(�) =
{
x ∈ A

∣∣ ∃ k ∈ {1, . . . , |�|} . x = �(k)
}
. A set is subfinite if it is

a subset of a finite set. Our definition of finite sets is equivalent to that of
Kuratowski finite set: PfinA is the join-semilattice generated by A.

The following is a useful observation: a finite set is either empty or inhab-
ited. For suppose e : {1, . . . , n} → A is a listing of A. If n = 0 then A is
empty, and if n �= 0 then A is inhabited by e(1).

Proposition 3.1 A finite set may be listed without repetitions if, and only if,
it is decidable.

Proposition 3.2 If A is decidable then so are Seq A and PfinA.

3.2 Enumerable Sets

The computably enumerable sets, formerly known as the recursively enumer-
able sets, play a central role in classical computability theory. They are a
basic concept in the synthetic theory as well, except that they are now just
“ordinary” enumerable sets.

Definition 3.3 A set A is enumerable, or countable, if there exists a surjection
e : N → 1 + A, called an enumeration of A. A set is subenumerable, or
subcountable, if it is a subset of an enumerable set.

The reason for mapping N onto 1 + A rather than onto A is that we also
want to include the empty set among the enumerable ones. The role of the
special element � ∈ 1 is to enumerate nothing, so that the empty set may be
enumerated by �, �, �, . . .When A is inhabited, we may enumerate it by an
onto map e : N � A.

For reference we list basic facts about enumerable sets, and leave it to the
reader to prove them (constructively):

(i) Finite sets are enumerable.

(ii) Enumerable sets are closed under quotients, disjoint sums, finite cartesian
products, and decidable subsets.

(iii) The union of an enumerable family of enumerable sets is enumerable.

(iv) The intersection of two enumerable subsets of a decidable set is enumer-
able.

(v) The finite sequences of an enumerable set form an enumerable set.

(vi) The finite subsets of an enumerable set form an enumerable family.

We say that e : N → 1 + A enumerates A without repetitions when e is an
enumeration and, for all n, m ∈ N, e(n) = e(m) �= � implies n = m.
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Proposition 3.4 A set can be enumerated without repetitions if, and only if,
it is enumerable and decidable.

Corollary 3.5 Every enumerable subset of N can be enumerated without rep-
etitions.

Proof. Every subset of N is decidable. �

We say that a set A contains an infinite sequence if there exists an injection
a : N → A. When A ⊆ N, such an injection may always be replaced by a
strictly increasing one.

Proposition 3.6 An inhabited enumerable subset of N may be enumerated in
a strictly increasing order if, and only if, it is a decidable subset of N and it
contains an infinite sequence.

Proposition 3.7 A decidable enumerable inhabited set A is a retract of N.
Furthermore, if A contains an infinite sequence then it is isomorphic to N.

Corollary 3.8 The following sets are isomorphic to N:

(i) the set of k-tuples Nk, with k ≥ 1,

(ii) the set of finite sequences Seq N,

(iii) the family of finite subsets PfinN.

Proof. These sets are decidable, enumerable and contain infinite sequences.�

The preceding proposition tells us that we may enumerate the elements of
a set with k-tuples, finite sequences or finite sets of numbers. We shall do so
whenever convenient.

We have exhibited some enumerable sets, but we still do not know whether
there are any sets that are not enumerable. Let us show that Cantor space 2N

and Baire space NN are not enumerable. Recall that a set A has the fixed point
property if every map f : A → A has a fixed point, which is an element x ∈ A

such that f(x) = x. We use Lawvere’s formulation of Cantor’s argument.

Proposition 3.9 (Lawvere) If e : A → BA is a surjection then B has the
fixed point property.

Proof. Given f : B → B, there is x ∈ A such that e(x) = λy : A . f(e(y)(y))
because e is surjective. Then e(x)(x) = f(e(x)(x)), hence e(x)(x) is a fixed
point of f . �

In passing we prove a famous theorem by Cantor.

Corollary 3.10 (Cantor’s Theorem) There is no surjection A � PA.
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Proof. If there were a surjection A � PA = ΩA then Ω would have the fixed
point property, but it does not because negation ¬ : Ω → Ω does not have a
fixed point. �

Corollary 3.11 Cantor space 2N and Baire space NN are not enumerable.

Proof. The sets 2 and N do not have the fixed point property. �

We have just proved our first theorem in computability, namely that total
recursive functions and recursive sets cannot be effectively enumerated.

Of particular interest to us is the set of enumerable subsets of N, which we
denote by E :

E =
{
A ∈ PN

∣∣ A is enumerable
}

.

It is the least family of subsets of N that contains ∅ and N, the singletons
and is closed under finite intersections and countable unions. Thus E is like
the topology on N generated by singletons, i.e., the discrete topology, except
that it is closed under enumerable unions rather than arbitrary ones. We shall
comment on this topological view of enumerable sets in 3.5.

Recall that the projection of a subset S ⊆ A × B is the set

{
x ∈ A

∣∣ ∃ y ∈B . 〈x, y〉 ∈ S
}

.

Theorem 3.12 (Projection Theorem) A subset of N is enumerable if, and
only if, it is the projection of a decidable subset of N × N.

Proof. Assume first that A is enumerated by e : N → 1 + A. For the set S

we simply take the graph of e, S =
{
〈m, n〉 ∈ N × N

∣∣ e(m) = n
}
, which is

a decidable set because N has decidable equality. Conversely, suppose S ⊆
N × N is decidable and let A =

{
m ∈ N

∣∣ ∃n∈N . 〈m, n〉 ∈ S
}
. Define a map

e : N × N → 1 + N by e〈i, j〉 = if 〈i, j〉 ∈ S then i else �. Then e is well
defined because S is decidable, and it obviously enumerates A. �

3.3 The Semidecidable Truth Values

The computably enumerable sets are also known as the “semidecidable” sets.
In this section we show that also in synthetic computability the enumerable
sets are semidecidable in a precise sense: we find a set Σ ⊆ Ω of “semidecid-
able” truth values such that E = ΣN.

Recall that by the Projection Theorem every A ∈ E is the projection of
a decidable subset D ⊆ N × N. Let d : N × N → 2 be the characteristic
function of D. Then the characteristic function χA : N → Ω of A is χA(m) =
(∃n∈N . d〈m, n〉). ∃n∈N . f(n) where f : N → 2 is f(n) = d〈m, n〉. So we
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may define the set of semidecidable truth values

Σ =
{
p ∈ Ω

∣∣ ∃ f ∈ 2N . (p ⇐⇒ (∃n∈N . f(n)))
}

.

As a first observation, note that the decidable truth values are semidecidable,
2 ⊆ Σ. In general, we define a semidecidable subset S ⊆ A to be one whose
characteristic map χS : A → Ω maps into Σ, that is (x ∈ S) ∈ Σ for all x ∈ A.

Proposition 3.13 A subset of N is enumerable if, and only if, it is semide-
cidable.

Proof. By definition of Σ. �

The definition of Σ is well known in synthetic domain theory and appears
in [18]. It is a dominance, which means that it satisfies � ∈ Σ and Rosolini’s
dominance axiom

∀ p∈Σ . ∀ q∈Ω . ((p =⇒ (q ∈ Σ)) =⇒ (p ∧ q) ∈ Σ) .

The set Σ inherits a partial order from the complete Heyting algebra Ω, but it
itself is not a complete Heyting algebra, only a lattice with countable suprema.
(Recall that a lattice is a poset L with least and greatest elements, and binary
infima and suprema.)

Definition 3.14 A σ-frame is a non-trivial lattice L in which suprema of
enumerable sets exist and binary infima distribute over enumerable suprema.
A morphism between σ-frames is a map which preserves the lattice structure
and enumerable suprema.

The definition of σ-frames was given by Rosolini [18] who called them “σ-
algebras”. We prefer not to call them σ-algebras in order to avoid confusion
with measure-theoretic σ-algebras.

Proposition 3.15 Σ is the initial σ-frame: for every σ-frame L there exists
a unique morphism Σ → L.

We mention one more characterization of Σ, which we could use as the defi-
nition of Σ in a predicative system (one without powersets and Ω).

Proposition 3.16 Σ is a quotient of N+ via the map q : N+ → Σ defined by
q(x) = (x < ∞).

Proof. Recall that x ∈ N+ is a binary sequence which is smaller than ∞
when it contains a 1. So x < ∞ is equivalent to ∃n∈N . x(n) = 1, which
is semidecidable. The map q is surjective because any p ∈ Σ with p ⇐⇒
∃n∈N . f(n) = 1 is equivalent to x < ∞ where x(n) = (∃ k ≤ n . f(k) = 1).�
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3.4 Markov Principle

If a0, a1, a2, . . . is a sequence of zeros and ones, not all of which are zeros, must
there be a one in the sequence? An affirmative answer is known as Markov
Principle and has several equivalent forms.

Proposition 3.17 The following are equivalent:

(i) Markov Principle: for every a : N → 2,

¬(∀n∈N . an = 0) =⇒ ∃n∈N . an = 1 .

(ii) For all x ∈ N+, if x �= ∞ then x ∈ N.

(iii) Semidecidable truth values are classical, Σ ⊆ Ω¬¬.

(iv) Semidecidable subsets are classical.

(v) Semidecidable subsets of N are classical.

While it may seem intuitively clear that Markov Principle holds, it cannot
be proved constructively. A number of results in computability rely on its
validity. Therefore, we accept it as an axiom.

Axiom 3.18 (Markov Principle) A binary sequence which is not constantly
0 contains a 1.

Proposition 3.19 Equality and the partial order on Σ are classical.

Proof. Because Σ ⊆ Ω¬¬ and Ω¬¬ has classical equality and partial order, Σ
does as well. �

The following is a useful consequence of Markov Principle.

Lemma 3.20 For any classical predicate ψ : Σ → Ω¬¬, (∀ p∈Σ . ψ(p)) ⇐⇒
ψ(⊥) ∧ ψ(�).

Proof. One direction is obvious. For the other, suppose ψ(⊥) and ψ(�).
Then, for any p ∈ Σ, (p = � ∨ p = ⊥) =⇒ ψ(p), hence ¬¬(p = � ∨ p =
⊥) =⇒ ¬¬ψ(p). But ¬¬(p = � ∨ p = ⊥) = ¬¬(p ∨ ¬p) = ¬(¬p ∧ ¬¬p) =
¬⊥ = � and ¬¬ψ(p) = ψ(p), therefore ψ(p) for every p ∈ Σ. �

Every book on computability theory contains (the special case A = N of)
the following theorem.

Theorem 3.21 (Post) A subset of a set A is decidable if, and only if, it and
its complement are semidecidable.

Proof. The theorem may be rephrased in terms of truth values: a truth value
p ∈ Ω is decidable if, and only if, p and ¬p are semidecidable. Obviously
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since 2 ⊆ Σ, a decidable truth value and its complement are semidecidable.
Conversely, suppose p ∈ Σ and ¬p ∈ Σ. Then by Markov Principle p ∨ ¬p ∈
Σ ⊆ Ω¬¬, therefore p ∨ ¬p = ¬¬(p ∨ ¬p) = ¬(¬p ∧ ¬¬p) = ¬⊥ = �, hence
p ∈ 2. �

3.5 The Topological View

Recall that ΣN is like a topology on N. In fact, for any set A, the family
of semidecidable predicates ΣA is a σ-frame: ∅ and A are the least and the
greatest elements of ΣA, binary infima are computed as intersections, and
countable suprema as unions. It makes sense then to think of ΣA as a topology
on A.

Definition 3.22 The (intrinsic) topology of a set A is the set ΣA of semide-
cidable subsets, which are also called open sets. The closed sets are the com-
plements of the open ones.

In the theory of effective topological spaces [20] the intrinsic topology is known
as the Eršov topology.

Let us compare the situation with classical topology. Recall that the open
subsets of a classical topological space X are in bijective correspondence with
continuous maps X → S, where S is the Sierpinski space which consists of
two points ⊥ and �, with {�} open and {⊥} closed. In our setting, the
correspondence holds by definition, with Σ in place of S and arbitrary maps
in place of continuous ones. However, the maps are not as arbitrary as you
might think:

Proposition 3.23 All maps are continuous.

Proof. For any f : A → B and an open set U : B → Σ, the inverse image
f ∗(U) =

{
x ∈ A

∣∣ f(x) ∈ U
}

is open because its characteristic map is U ◦ f :
A → Σ. Therefore f is continuous. �

We are cheating, of course, since we defined topology in such a way that
all maps are trivially continuous. For a real challenge we should attempt to
show, for example, that all maps R → R are continuous in the usual ε–δ sense.
Although this turns out to be the case, we are not going to prove it here.

While in classical topology a given set may be endowed with many dif-
ferent topologies, in the synthetic world each set has precisely one topology
associated with it. At this point you should be worried that certain sets might
be equipped with the “wrong topology”. For example, there are at least two
important topologies on the dual of a Banach space. How can we have both if
a set is only allowed to have one? The answer is that sets which are the same
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classically may be different constructively, and so they may carry different
topologies. In the case of the dual of Banach spaces, one might consider the
bounded linear functionals versus the normed linear functionals. These might
turn out to be different sets, each with its own well known topology.

If we were going to develop the topological point of view further, we would
borrow ideas from Synthetic Domain Theory [11,18], Abstract Stone Dual-
ity [22], and Synthetic Topology [5]. We leave such an task for the future.
However, we shall keep the topological point of view in mind and use its
terminology whenever convenient.

4 Basic Computability Theory

In this section we introduce the Enumerability Axiom and derive the basic
theorems of computability theory.

4.1 Partial Functions and Partial Values

In classical computability theory the computable partial functions are charac-
terized as precisely those partial functions whose graph is computably enumer-
able. This characterization helps us find the corresponding notion in synthetic
computability.

A partial function f : A ⇀ B is a function f : A′ → B defined on a subset
A′ ⊆ A, called the support of f . Equivalently, such an f corresponds to a
(total) function g : A → B̃ where B̃ is the set of partial values

B̃ =
{
s ∈ PB

∣∣ ∀ x, y ∈B . (x ∈ s ∧ y ∈ s =⇒ x = y)
}

,

The connection between f and g is g(x) =
{
f(x) ∈ B

∣∣ x ∈ A′
}
. The empty

set represents the value “undefined” and is denoted by ⊥B = ∅, while a single-
ton {y} represents a “fully defined” value y ∈ B, which we call a total value.

The singleton map {−} : B → B̃ is an inclusion that maps the elements of B

precisely onto the total values of B̃. We shall often identify y ∈ B with its
representation as a total value {y} ∈ B̃. The statement ∃ y ∈B . (s = {y})
means “the partial value s is total” and is abbreviated as s↓.

The graph of f : A → B̃ is the set

Γ(f) =
{
〈x, y〉 ∈ A × B

∣∣ f(x) = {y}
}

.

Among all partial functions N → Ñ we are only interested in those that have
enumerable graphs.
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Proposition 4.1 A partial function f : N → Ñ has an enumerable graph if,
and only if, f(n)↓ is semidecidable for every n ∈ N.

Proof. If e : N → 1 + Γ(f) is an enumeration of Γ(f) then f(n)↓ if, and only
if,

(∃m∈N . f(n) = {m}) ⇐⇒ (∃ k ∈N . e(k) �= � ∧ π1 (e(k)) = m) ∈ Σ .

Conversely, suppose f(n)↓ ∈ Σ for every n ∈ N. Observe that 〈n, k〉 ∈
Γ(f) if, and only if, f(n)↓ ∧ f(n) = {k}. If f(n)↓ then there is a unique
m ∈ N such that f(n) = {m}, therefore f(n) = {k} is semidecidable, even
decidable, because it is equivalent to m = k. By the dominance axiom, f(n)↓∧
f(n) = {k} is semidecidable so Γ(f) is a semidecidable subset of N×N, hence
enumerable. �

We single out those partial values whose totality is semidecidable.

Definition 4.2 The lifting A⊥ of A is the set of Σ-partial values,

A⊥ =
{

s ∈ Ã
∣∣ s↓ ∈ Σ

}
.

A Σ-partial function is a partial function f : A → B⊥.

The operation A �→ A⊥ is a functor. It acts on a map f : A → B by

f⊥(p) =
{
y ∈ B

∣∣ ∃ x∈A . x ∈ p ∧ f(x) = y
}

.

This is well defined because f⊥(p)↓ ⇐⇒ p↓. Thus f⊥({x}) = {f(x)} and
f⊥(⊥A) = ⊥B. For those familiar with category theory we mention that the
lifting functor −⊥ is in fact a monad whose multiplication and unit are union
and singleton, respectively:

μA : A⊥⊥ → A⊥ ηA : A → A⊥

μA : s �→ ∪s =
{
x ∈ A

∣∣ ∃ p∈A⊥ . p ∈ S ∧ x ∈ p
}

ηA : x �→ {x}

The Σ-partial functions N → N⊥ are the synthetic analogue of partial
computable functions. A classical theorem of computability theory claims
that the computably enumerable sets are precisely the supports of partial
computable functions.

Proposition 4.3

(i) A partial function is Σ-partial if, and only if, its support is semidecidable.

(ii) A subset is semidecidable if, and only if, it is the support of a Σ-partial
function.
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Proof.

(i) The support of f : A → B̃ is the set
{
x ∈ A

∣∣ f(x)↓
}
. Clearly then, the

support is semidecidable if, and only if, totality is semidecidable.

(ii) We already proved that the support of a Σ-partial function is semidecid-
able. Conversely, if S ⊆ A is semidecidable then it is the support of its
characteristic function χS : A → Σ = 1⊥.

�

Among all semidecidable subsets of N × N we may identify those that are
graphs of Σ-partial functions. Recall that a relation R ⊆ A×B is single-valued
if R(x, y) and R(x, z) implies y = z.

Proposition 4.4 The graphs of Σ-partial functions N → N⊥ are precisely all
the single-valued semidecidable relations on N × N.

Proof. The graph of a Σ-partial function is semidecidable because it is enu-
merable, and it is clearly single valued. Given a single-valued R ∈ ΣN×N,
define fR : N → N⊥ by fR(m) =

{
n ∈ N

∣∣ 〈m, n〉 ∈ R
}
. Then Γ(fR) = R. �

A selection for a binary relation R ⊆ A×B is a partial function s : A → B̃

such that, for all x ∈ A,

(∃ y ∈B . R(x, y)) =⇒ s(x)↓ ∧ R(x, s(x)) .

The selection function s is like a choice function for R, except that it is defined
only at those arguments for which there is something to choose from. A well
known theorem in computability theory, the Single Value Theorem, says that
every semidecidable relation on N × N has a Σ-partial selection.

Theorem 4.5 (Single Value Theorem) Every semidecidable binary rela-
tion on N has a Σ-partial selection.

Proof. Let e : N → 1 + R be an enumeration of R ∈ ΣN×N. Define S by

S = {〈m, n〉 ∈ N × N
∣∣

∃ k ∈N . (e(k) = 〈m, n〉 ∧ ∀ j < k . (e(j) �= � =⇒ π1 (e(j)) �= m))} .

Thus we put 〈m, n〉 in S when it is the first pair of the form 〈m,−〉 enumerated
by e. Clearly S ⊆ R. To see that it is single-valued, suppose 〈m, n〉 ∈ S and
〈m, n′〉 ∈ S. Then 〈m, n〉 = e(k) and 〈m, n′〉 = e(k′) for some k, k′ ∈ N. It
is impossible that k′ < k or k < k′, therefore k = k′ and so n = n′. Lastly,
if 〈m, n〉 ∈ R then 〈m, n〉 = e(k) for some k ∈ N. Now there is a least j ≤ k

such that π1 (e(j)) = m. Then e(j) = 〈m, n′〉 ∈ S. A selection for R is the
function whose graph is S. �
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4.2 The Enumerability Axiom

Everything we have considered so far is consistent with classical logic. Of
course, if we interpreted all the definitions and theorems in classical set theory,
we would not discover anything interesting, as it would turn out that 2 = Σ =
Ω, all predicates and sets are decidable, all subsets of N are enumerable, etc.
It is time to introduce a genuinely interesting axiom.

Axiom 4.6 (Enumerability) There are enumerably many enumerable sub-
sets of N.

Let W− : N � E be such an enumeration.

The idea for the Enumerability Axiom comes from the Enumeration Theo-
rem of classical computability theory, which states that there is a computable
enumeration of computably enumerable sets. In the classical theory there is
also an enumeration theorem for partial computable functions, which we have
too.

Proposition 4.7 N → N⊥ is enumerable.

Proof. By Enumerability Axiom there is an enumeration V− : N � ΣN×N,
because N ∼= N×N. By Single Value Theorem, for every n ∈ N there exists a
selection for Vn. By Number Choice there is a choice function ϕ− : N → (N →
N⊥) such that ϕn is a selection for Vn. We are done because ϕ is surjective:
for any f : N → N⊥ there is n ∈ N such that Vn = Γ(f), but then ϕn = f

because f is the only selection for Γ(f). �

Let ϕ− : N � (N → N⊥) be an enumeration. Next we derive some basic
consequences of the Enumeration Axiom.

Proposition 4.8 Σ and E have the fixed-point property.

Proof. By Proposition 3.9 together with the observation that EN = (ΣN)N ∼=
ΣN×N ∼= ΣN = E . �

Corollary 4.9 None of the inclusions 2 ⊆ Σ ⊆ Ω¬¬ ⊆ Ω is an equality.

Proof. Neither 2 nor Ω¬¬ has the fixed-point property so they cannot be
equal to Σ. If Ω¬¬ = Ω then 2 = Ω, but we already have 2 �= Σ ⊆ Ω, hence
Ω¬¬ �= Ω. �

The Enumerability Axiom invalidates classical logic because it falsifies the
Law of Excluded Middle, 2 = Ω, which contradicts Corollary 4.9.

Because 2 �= Σ the decidable and the semidecidable subsets of N are not
the same. We may explicitly construct a semidecidable subset which is not
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decidable, namely the well known

K =
{
n ∈ N

∣∣ n ∈ Wn

}
.

The set K is not decidable because its complement N \K is not semidecidable.
If it were there would be some m ∈ N such that Wm = N \ K and then we
would have the usual contradiction

m ∈ K ⇐⇒ m ∈ Wm ⇐⇒ m ∈ N \ K ⇐⇒ m �∈ K .

Recall that Σ is a σ-frame. Its partial order p ≤ q is logical implication
p =⇒ q. It is important to know how maps Σ → Σ interact with the partial
order.

Proposition 4.10 Every map f : Σ → Σ is monotone.

Proof. The statement of monotonicity of f is classical:

∀ p, q∈Σ . (p ≤ q =⇒ f(p) ≤ f(q)) .

By Lemma 3.20 this statement reduces to checking all four combinations of
p, q ∈ {⊥,�}. Of these only p = ⊥, q = � is nontrivial so that monotonicity
of f reduces to f(⊥) ≤ f(�). Suppose the opposite of this, which is f(⊥) ∧
¬f(�), were true. Then f(⊥) = � and f(�) = ⊥. Now p = f(p) implies
p �= ⊥ and p �= �, which is impossible. Hence f does not have a fixed
point, which cannot be because Σ has the fixed-point property. We proved
¬¬(f(⊥) ≤ f(�)), hence f(⊥) ≤ f(�) as desired. �

Proposition 4.11 (Phoa’s Principle) For every f : Σ → Σ,

f(x) = (f(⊥) ∨ x) ∧ f(�) and f(x) = f(⊥) ∨ (x ∧ f(�)) .

Proof. Phoa’s principle is a classical statement so we only need to check
x = ⊥ and x = �. This gives us four equations of which two are trivially true
and the other two are f(⊥) = f(⊥)∧ f(�) and f(�) = f(⊥)∨ f(�). Both of
these are equivalent to f(⊥) ≤ f(�), which holds because f is monotone. �

The relevance of Phoa’s Principle is revealed by the following corollary.

Corollary 4.12 Every map f : Σ → Σ preserves binary infima and countable
suprema.

Proof. By Phoa’s Principle,

f(p ∧ q) = f(⊥) ∨ (p ∧ q ∧ f(�)) = f(⊥) ∨ ((p ∧ f(�)) ∧ (q ∧ f(�))) =

(f(⊥) ∨ (p ∧ f(�))) ∧ (f(⊥) ∨ (p ∧ f(�))) = f(p) ∧ f(q) ,
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and

f(
∨

n pn) = (f(⊥) ∨
∨

n pn) ∧ f(�) = (
∨

n f(⊥) ∨ pn) ∧ f(�) =∨
n(f(⊥) ∨ pn) ∧ f(�) =

∨
n f(pn) .

�

4.3 Focal Sets

The lifting operation attaches to a set A an “undefined” value ⊥A. Some-
times a set already contains an element which plays the role of “undefined”;
for example, in the set of Σ-partial functions A → B⊥ it is the everywhere un-
defined function λx : A .⊥B. Such a special element can be found by attaching
⊥ to the set and mapping it back in to the original set, without changing the
original elements. This idea leads to the following definition.

Definition 4.13 A focal set is a set A together with a mapping ε : A⊥ → A,
called the focus map, such that ε({x}) = x for all x ∈ A. The element ε(⊥A)
is called the focus point.

We usually denote the focus point by ⊥. A lifted set A⊥ is focal. The focus
map is the multiplication μA for the lifting monad, as defined in the paragraph
following Definition 4.2. The focus point is ⊥A, as expected.

If B is a focal set with focus map δ : B⊥ → B then A → B is a focal set
with focus map ε : (A → B)⊥ → (A → B) defined by

ε(p) = λx :A . δ(
{
y ∈ B

∣∣ ∃ f : A → B⊥ . (f ∈ p ∧ f(x) = {y})
}
) . (1)

The focus point of A → B is the map that maps every element to the focus
point of B. By combining the last two observations, we see that the set of
Σ-partial maps A → B⊥ is focal.

A product of focal sets A and B is focal. The focus map ε : (A × B)⊥ →
A×B is ε(p) = 〈εA(π1⊥(p)), εB(π2⊥(p))〉, and the focus point is the pair whose
components are the foci of A and B.

A set can have two focal structures, for example, the maps δ : Ω⊥ → Ω
and ε : Ω⊥ → Ω defined by δ(s) = ∃ p∈ s . p and ε(s) = ∀ p∈ s . p both satisfy
δ({q}) = q and ε({q}) = q, so they define focal structures on Ω, but δ(∅) = ⊥
and ε(∅) = �.

The enumerable focal sets are know in the theory of numbered sets as
Eršov complete sets [4]. They have good properties.

Lemma 4.14 (a) If f : A → B is onto then so is f⊥ : A⊥ → B⊥. (b) If
f : A → B is onto then so is fN : AN → BN.
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Proposition 4.15 If A is an enumerable focal set then so is AN.

Proof. Let e : N � A be an enumeration and ε : A⊥ → A the focal map. By
the previous lemma, we have a chain of surjections

N
ϕ

�� �� NN

⊥

eN

⊥
�� �� AN

⊥

εN
�� �� AN .

This proves that AN is enumerable. It is focal by (1). �

4.4 Inseparable Sets

A classical theorem of computability theory says that there exists a pair of
computably enumerable sets which cannot be separated by a recursive set.
We present the same theorem in a domain-theoretic form.

The domain of partial Booleans 2⊥ is ordered by subset inclusion. The least
element is ⊥, while 0 and 1 are maximal elements. The set 2⊥ is enumerable
because it is a retract of the enumerable set N⊥. By Proposition 4.15, it
follows that also Plotkin’s universal domain [16] 2N

⊥
is enumerable. One might

think, drawing from classical experience, that every element of 2N

⊥
is below a

maximal one.

Proposition 4.16 There exists a ∈ 2N

⊥
such that every maximal b ∈ 2N

⊥
is

inconsistent with a, in the sense that there exists k ∈ N such that ak and bk

are unbounded in 2⊥.

Proof. Let ψ : N � 2N

⊥
be an enumeration, and i : 2⊥ → 2⊥ the lifting

of negation ¬ : 2 → 2. For n ∈ N define an = i(ψn(n)) and consider any
maximal b ∈ 2N

⊥
. There exists k ∈ N such that b = ψk. Because bk is total

bk = ψk(k) �= i(ψk(k)) = ak, therefore b and a are inconsistent at k. �

The sets A0 = a−1({0}) and A1 = a−1({1}), where a is the element from
the proposition, form a pair of disjoint open subsets of N which cannot be
separated by a clopen one.

4.5 Creative Sets

The exterior of a subset S ⊆ X is the largest open subset of X disjoint
from S. We say that S ⊆ X is creative if its complement is inexhaustible by
open sets, i.e., for every U ∈ ΣX such that S ∩ U = ∅ there exists V ∈ ΣX

such that S ∩ V = ∅, U ⊆ V , and V \U is inhabited. A creative set does not
have an exterior, as any candidate for the exterior may be enlarged. While
in classical topology there are no creative sets, the situation is different in
synthetic computability.
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Proposition 4.17 There exists an open creative subset of N.

Proof. The set K =
{
n ∈ N

∣∣ n ∈ Wn

}
is open and creative. Indeed, suppose

U ∩ K = ∅ for some U ∈ ΣN. For some n ∈ N we have U = Wn. Both n ∈ U

and n ∈ K imply n ∈ U ∩ K, so it must be the case that n �∈ K and n �∈ U .
The open set {n} ∪ U enlarges U and is disjoint from K. �

4.6 Simple and Immune Sets

A subset S ⊆ X is simple if S intersects every infinite subset of X and X \ S

is not finite. A set is immune if it is neither finite nor infinite.

Proposition 4.18 There exists an open simple subset of N.

Proof. Following Post, consider P =
{
〈m, n〉 ∈ N × N

∣∣ n > 2m ∧ n ∈ Wm

}
,

and let f : N → N⊥ be a selection for P . The image S = im(f) is open, and
because f(m) > 2m, N \ S cannot be finite. For any infinite enumerable set
U = Wm, we have f(m)↓ and f(m) ∈ Wm = U hence U and im(f) intersect
at f(m). �

Corollary 4.19 There exists a closed immune subset of N.

Proof. Consider the complement of Post’s simple set S. �

4.7 Rice’s Theorem

A set A is connected if it cannot be decomposed as a disjoint union A1 +A2 in
a non-trivial way. An equivalent way of saying this is that every map A → 2

is constant, which we use as the definition of connectedness.

Proposition 4.20 Σ is connected.

Proof. Consider a map h : Σ → 2. Let r : 2 → Σ be the map

r(p) = if p = h(⊥) then � else ⊥ .

By Proposition 4.10 the map r ◦ h is monotone so that for every x ∈ Σ we
have � = r(h(⊥)) ≤ r(h(x)) ≤ �. Thus r(h(x)) = �, hence h(x) = h(⊥) by
definition of r. �

Lemma 4.21 Let A be a focal set with focus ⊥A. For every x ∈ A there exists
f : Σ → A such that f(⊥) = ⊥A and f(�) = x.

Proof. Let g : 1 → A be the map g(�) = x. Define f(s) = ε(g⊥(s)) where
ε : A⊥ → A is the focal map. Then f(⊥) = ε(g⊥(⊥)) = ε(⊥) = ⊥A and
f(�) = ε(g⊥(�)) = ε(x) = x, as required. �
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Theorem 4.22 (Rice’s Theorem) A focal set is connected.

Proof. Let h : A → 2 be an arbitrary map. We show that h(x) = h(⊥A) for
every x ∈ A. As in Lemma 4.21, let f : Σ → A be such that f(⊥) = ⊥A

and f(�) = x. Because Σ is connected h ◦ f is constant, but this means
h(x) = h(f(�)) = h(f(⊥)) = h(⊥A). �

Classical Rice’s Theorem states that there are no non-trivial decidable subsets
of E . This follows immediately from our theorem as E is focal.

4.8 Recursion Theorem

A multivalued function f : A ⇒ B is a function f : A → PB such that f(x) is
inhabited for every x ∈ A. The graph of a multivalued function Γ(f) ⊆ A×B,
defined by

Γ(f) =
{
〈x, y〉 ∈ A × B

∣∣ y ∈ f(x)
}

,

is a total relation. Every total relation R ⊆ A × B determines a multival-
ued function fR : A ⇒ B by fR(x) =

{
y ∈ B

∣∣ R(x, y)
}
, hence multivalued

functions and total relations are two equivalent notions.

A fixed point of a multivalued function f : A ⇒ A is x ∈ A such that
x ∈ f(x).

Theorem 4.23 (Recursion Theorem) Every multivalued function on an
enumerable focal set has a fixed point.

Proof. Let f : A ⇒ A be a multivalued function, let e : N � A be an
enumeration, and ε : A⊥ → A a focal map. For every k ∈ N there exists
m ∈ N such that e(m) ∈ f(e(k)). By Number Choice there is a map c : N → N

such that e(c(k)) ∈ f(e(k)) for every k ∈ N. It suffices to find k such that
e(c(k)) = e(k) since then we can take x = e(k).

For every m ∈ N there is n ∈ N such that ε(e⊥(c⊥(ϕm(m)))) = e(n). By
Number Choice there is g : N → N such that ε(e⊥(c⊥(ϕm(m)))) = e(g(m)) for
every m ∈ N. There is j ∈ N such that g = ϕj . Let k = g(j). Then

e(k) = e(g(j)) = ε(e⊥(c⊥(ϕj(j)))) = ε(e⊥(c⊥(g(j)))) = e(c(g(j))) = e(c(m)) .

�

The classical Recursion Theorem is indeed a consequence of what we just
proved.

Corollary 4.24 For every f : N → N there exists n ∈ N such that ϕf(n) = ϕn.
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Proof. Apply Recursion Theorem to the enumerable focal set N → N⊥ and
the multivalued function h, defined by

h(u) =
{
v : N → N⊥

∣∣ ∃n∈N . u = ϕn ∧ v = ϕf(n)

}
,

to obtain a fixed point u ∈ h(u). By definition of h there exists n ∈ N such
that u = ϕn and u = ϕf(n), hence ϕn = ϕf(n). �

The following consequence of Recursion Theorem is a generalization of
Berger’s Branching Lemma [1].

Lemma 4.25 (Berger) Let A be an enumerable focal set, U : A ⇒ Σ a
multivalued open set, and x : N+ → A a sequence with a limit. If U(x∞) =
{�} then � ∈ U(xn) for some n ∈ N.

Proof. Recall that by Proposition 3.16 for every s ∈ Σ there exists p ∈ N
+

such that s = � ⇐⇒ p < ∞. Therefore, for every y ∈ A there is p ∈ N+

such that (p < ∞) ∈ U(y). Consequently, for every y ∈ A there is z ∈ A such
that

∃ p∈N
+ . ((p < ∞) ∈ U(y) ∧ z = xp) . (2)

By Recursion Theorem there is y = z satisfying (2). For such y, p is not
equal to ∞ because p = ∞ implies y = x∞ and ⊥ = (p < ∞) ∈ U(y) =
U(x∞) = {�}, contradiction. By Proposition 3.17, p ∈ N so we have xp = y

and � = (p < ∞) ∈ U(xp), as required. �

The single-valued version of Berger’s Lemma, in which the multi-valued func-
tion is replaced by an open set, follows more easily from the following obser-
vation.

Proposition 4.26 If U ⊆ N+ is open and ∞ ∈ U , then n ∈ U for some
n ∈ N.

Proof. By Markov Principle it suffices to show that not for all n ∈ N, U(n) =
⊥. If we had U(n) = ⊥ for all n ∈ N, we could define a map f : Σ → Σ by
f([p]) = U(p), where [−] : N

+ → Σ is the quotient map p �→ (p < ∞). Since Σ
has the fixed-point property, there exists s ∈ Σ such that f(s) = s. However,
since f(�) = ⊥ and f(⊥) = �, s is different from both ⊥ and �, which is
impossible. �

It is natural to ask whether the conclusion of Proposition 4.26 may be strength-
ened to the existence of m such that n ∈ U for every n ≥ m. An adaptation of
Friedberg’s counterexample [7], see also [9, 15.3.31], shows this is impossible,
as Alex Simpson has observed.
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4.9 The Myhill-Shepherdson and Rice-Shapiro Theorems

Recall that a poset (A,≤) is ω-chain complete if every increasing chain x0 ≤
x1 ≤ x2 ≤ · · · has a supremum

∨
n xn. A subset S ⊆ A generates A if every

element in A is the supremum of a chain in S. A base for A is an enumerable
subset S ⊆ A that generates A, and x ≤ y is semidecidable whenever x ∈ S

and y ∈ A.

Proposition 4.27 The following sets are ω-chain complete with a base, there-
fore countably based:

(i) Σ with the base {�},

(ii) N⊥ with the base N,

(iii) AN, if A is an ω-chain complete focal set with a base.

Proof. Only the last part requires some attention. The partial order on AN

is component-wise: f ≤ g ⇐⇒ ∀n∈N . f(n) ≤ g(n). This makes AN into an
ω-chain complete poset with the supremum of a chain computed component-
wise. If S is a base for A, we may take as a base for AN the set

T =
{
f ∈ A

N
∣∣ ∃n∈N . ∀ k ≥ n . f(k) = ⊥A

}
.

It is not hard to see that T is enumerable. Given any f ∈ AN, there is by
Countable Choice a map g : N → SN such that, for every m ∈ N, g(m) is a
chain in S with supremum f(m). Define h : N → T by

h(n)(m) = if m < n then g(m)(n) else ⊥A .

Then h is a chain in T whose supremum is f :

∨
n

h(n)(m) =
∨

n>m

h(n)(m) =
∨

n>m

g(m)(n) = f(m) .

�

By the previous proposition ΣN and N → N⊥ are ω-chain complete with
bases consisting of the finite subsets of N and the finite Σ-partial maps, re-
spectively. A map f : N → N⊥ is finite if it has finite support.

Theorem 4.28 In an ω-chain complete poset (A,≤) open subsets are upward
closed and inaccessible by chains, i.e., if the supremum of a chain belongs to
an open set then already some element of the chain does.

Furthermore, if S ⊆ A is a base for A, then every open subset of A is
an enumerable union of open subsets of the form ↑x =

{
y ∈ A

∣∣ x ≤ y
}

with
x ∈ S.
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Proof. For the first claim, suppose x ∈ U ∈ ΣA and x ≤ y. Define a sequence
a : N+ → A by ap =

∨
n∈N

(if n < p then x else y). Then a∞ = x ∈ U

and by Berger’s Lemma there exists k < ∞ such that y = ak ∈ U . For the
second claim, suppose x0 ≤ x1 ≤ · · · is a chain with

∨
n xn ∈ U ∈ ΣA. Define

b : N
+ → A by bp =

∨
n∈N

xmin(n,p). Then b∞ =
∨

n xn ∈ U and once again by
Berger’s Lemma there exists k < ∞ such that xk = bk ∈ U .

For the last claim, suppose U is open. Then T = S ∩ U is enumerable.
By the first claim

⋃
x∈T ↑x ⊆ U , and the opposite inclusion holds as well: if

y ∈ U , then y =
∨

n xn for some chain x0 ≤ x1 ≤ · · · in S, therefore by
the second claim xk ∈ U for some k ∈ N. But then y ∈ ↑xk ⊆

⋃
x∈T ↑x, as

required. �

The Myhill-Shepherdson and Rice-Shapiro theorems characterize the topolo-
gies of N → N⊥ and ΣN, respectively. They follow immediately from the
previous proposition and theorem.

Corollary 4.29 (Myhill-Shepherdson) A subset U of N → N⊥ is open if,
and only if, it is an enumerable union U =

⋃
n∈N

↑fn, where each fn : N → N⊥

has finite support.

Corollary 4.30 (Rice-Shapiro) A subset U ⊆ ΣN is open if, and only if, it
is an enumerable union U =

⋃
n∈N

↑Sn, where each Sn ⊆ N is finite.

5 Conclusion

We have only scratched the surface of a large body of work. There are at least
two directions to go from here.

First, we could develop recursive topology [20] and recursive analysis in a
style that resembles the usual topology and analysis, but with unusual results,
such as failure of compactness of the closed interval and the existence of open
subsets of Cantor space that are not metrically open. But we could also prove
positive results, such as the Kreisel-Lacombe-Shoenfield theorem, which states
that all functions between complete separable metric spaces are continuous in
the metric sense.

Second, we have not spoken at all about Turing reducibility and Turing
degrees. How this can be done with the j-operators in the effective topos
was indicated by Hyland [10]. There might be simpler ways to treat Turing
degrees. In particular, it is well known that the priority methods are related
to Baire category theorem [15, V.3], a connection worth examining in the
synthetic setting.

Our axiomatization has its limit: it cannot prove any results in computabil-
ity theory that fail to relativize to oracle computations. This is so because the
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theory can be interpreted in a variant of the effective topos built from partial
recursive functions with access to an oracle.
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