79 research outputs found
Fast Deterministic Selection
The Median of Medians (also known as BFPRT) algorithm, although a landmark
theoretical achievement, is seldom used in practice because it and its variants
are slower than simple approaches based on sampling. The main contribution of
this paper is a fast linear-time deterministic selection algorithm
QuickselectAdaptive based on a refined definition of MedianOfMedians. The
algorithm's performance brings deterministic selection---along with its
desirable properties of reproducible runs, predictable run times, and immunity
to pathological inputs---in the range of practicality. We demonstrate results
on independent and identically distributed random inputs and on
normally-distributed inputs. Measurements show that QuickselectAdaptive is
faster than state-of-the-art baselines.Comment: Pre-publication draf
C++ Coding Standards: 101 Rules, Guidelines, and Best Practices
Consistent, high-quality coding standards improve software quality, reduce time-to-market, promote teamwork, eliminate time wasted on inconsequential matters, and simplify maintenance. Now, two of the world's most respected C++ experts distill the rich collective experience of the global C++ community into a set of coding standards that every developer and development team can understand and use as a basis for their own coding standards
Relative Stabilities of Conserved and Non-Conserved Structures in the OB-Fold Superfamily
The OB-fold is a diverse structure superfamily based on a β-barrel motif that is often supplemented with additional non-conserved secondary structures. Previous deletion mutagenesis and NMR hydrogen exchange studies of three OB-fold proteins showed that the structural stabilities of sites within the conserved β-barrels were larger than sites in non-conserved segments. In this work we examined a database of 80 representative domain structures currently classified as OB-folds, to establish the basis of this effect. Residue-specific values were obtained for the number of Cα-Cα distance contacts, sequence hydrophobicities, crystallographic B-factors, and theoretical B-factors calculated from a Gaussian Network Model. All four parameters point to a larger average flexibility for the non-conserved structures compared to the conserved β-barrels. The theoretical B-factors and contact densities show the highest sensitivity. Our results suggest a model of protein structure evolution in which novel structural features develop at the periphery of conserved motifs. Core residues are more resistant to structural changes during evolution since their substitution would disrupt a larger number of interactions. Similar factors are likely to account for the differences in stability to unfolding between conserved and non-conserved structures
- …