61 research outputs found

    Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP® Peptides) Conjugated with Different Fluorescent Dyes

    Get PDF
    Purpose Acidification of extracellular space promotes tumor development, progression, and invasiveness. pH (low) insertion peptides (pHLIP® peptides) belong to the class of pH-sensitive membrane peptides, which target acidic tumors and deliver imaging and/or therapeutic agents to cancer cells within tumors. Procedures Ex vivo fluorescent imaging of tissue and organs collected at various time points after administration of different pHLIP® variants conjugated with fluorescent dyes of various polarity was performed. Methods of multivariate statistical analyses were employed to establish classification between fluorescently labeled pHLIP® variants in multidimensional space of spectral parameters. Results The fluorescently labeled pHLIP® variants were classified based on their biodistribution profile and ability of targeting of primary tumors. Also, submillimeter-sized metastatic lesions in lungs were identified by ex vivo imaging after intravenous administration of fluorescent pHLIP® peptide. Conclusions Different cargo molecules conjugated with pHLIP® peptides can alter biodistribution and tumor targeting. The obtained knowledge is essential for the design of novel pHLIP®-based diagnostic and therapeutic agents targeting primary tumors and metastatic lesions

    Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH

    Get PDF
    AIMS: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely-balanced sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge and return pHi to normal. METHODS AND RESULTS: Following left-ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl–/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinisation when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate to improve systemic buffering had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes (NRVMs) incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) upregulation and Slc4a2 (AE2) downregulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had low chloride concentration, a manoeuvre that reduces the extent of pHi decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterised as pH-sensors, ablated pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS: Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities. TRANSLATIONAL PERSPECTIVE: As a consequence of the inherent thermodynamic coupling between intra- and extracellular pH (pHi/pHe), sustained changes to perfusion, such as those in coronary disease or development, would have deleterious effects on the internal acid-base milieu of myocytes and hence cardiac function, unless offset by a corrective process. Using in-vivo and in-vitro models of acidification, we characterise this adaptive process functionally, and describe how it is engaged to auto-regulate pHi. This additional layer of homeostatic oversight enables the myocardium to operate within its optimal pHi-range, even at times when vascular perfusion is failing to maintain chemical constancy of the interstitial fluid

    Significance analysis of microarray for relative quantitation of LC/MS data in proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis. We explore the possibility of applying the Significance Analysis of Microarray (SAM) method (PNAS 98:5116-5121) to a differential proteomics problem of two samples with replicates. The quantitative proteomic analysis was carried out with nanoliquid chromatography/linear iron trap-Fourier transform mass spectrometry. The biological sample model included two <it>Mycobacterium smegmatis </it>unlabeled cell cultures grown at pH 5 and pH 7. The objective was to compare the protein relative abundance between the two unlabeled cell cultures, with an emphasis on significance analysis of protein differential expression using the SAM method. Results using the SAM method are compared with those obtained by fold change and the conventional <it>t</it>-test.</p> <p>Results</p> <p>We have applied the SAM method to solve the two-sample significance analysis problem in liquid chromatography/mass spectrometry (LC/MS) based quantitative proteomics. We grew the pH5 and pH7 unlabelled cell cultures in triplicate resulting in 6 biological replicates. Each biological replicate was mixed with a common <sup>15</sup>N-labeled reference culture cells for normalization prior to SDS/PAGE fractionation and LC/MS analysis. For each biological replicate, one center SDS/PAGE gel fraction was selected for triplicate LC/MS analysis. There were 121 proteins quantified in at least 5 of the 6 biological replicates. Of these 121 proteins, 106 were significant in differential expression by the <it>t</it>-test (<it>p </it>< 0.05) based on peptide-level replicates, 54 were significant in differential expression by SAM with Δ = 0.68 cutoff and false positive rate at 5%, and 29 were significant in differential expression by the <it>t</it>-test (<it>p </it>< 0.05) based on protein-level replicates. The results indicate that SAM appears to overcome the false positives one encounters using the peptide-based <it>t</it>-test while allowing for identification of a greater number of differentially expressed proteins than the protein-based <it>t</it>-test.</p> <p>Conclusion</p> <p>We demonstrate that the SAM method can be adapted for effective significance analysis of proteomic data. It provides much richer information about the protein differential expression profiles and is particularly useful in the estimation of false discovery rates and miss rates.</p

    Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C

    Get PDF
    Cardiac myosin binding protein-C (cMyBP-C) is an accessory protein found in the A-bands of vertebrate sarcomeres and mutations in the cMyBP-C gene are a leading cause of familial hypertrophic cardiomyopathy. The regulatory functions of cMyBP-C have been attributed to the N-terminus of the protein, which is composed of tandem immunoglobulin (Ig)-like domains (C0, C1, and C2), a region rich in proline and alanine residues (the Pro-Ala rich region) that links C0 and C1, and a unique sequence referred to as the MyBP-C motif, or M-domain, that links C1 and C2. Recombinant proteins that contain various combinations of the N-terminal domains of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but the specific sequences required for these effects differ between species; the Pro-Ala region has been implicated in human cMyBP-C whereas the C1 and M-domains appear important in mouse cMyBP-C. To investigate whether species-specific differences in sequence can account for the observed differences in function, we compared sequences of the Pro-Ala rich region in cMyBP-C isoforms from different species. Here we report that the number of proline and alanine residues in the Pro-Ala rich region varies significantly between different species and that the number correlates directly with mammalian body size and inversely with heart rate. Thus, systematic sequence differences in the Pro-Ala rich region of cMyBP-C may contribute to observed functional differences in human versus mouse cMyBP-C isoforms and suggest that the Pro-Ala region may be important in matching contractile speed to cardiac function across species

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Протокол функционального обследования аноректальной зоны и классификация нарушений: международный консенсус и Российские рекомендации

    Get PDF
    This manuscript summarizes consensus reached by the International Anorectal Physiology Working Group (IAPWG) for the performance, terminology used, and interpretation of anorectal function testing including anorectal manometry (focused on high-resolution manometry), the rectal sensory test, and the balloon expulsion test. Based on these measurements, a classification system for disorders of anorectal function is proposed. Aim to provide information about methods of diagnosis and new classification of functional anorectal disorders to a wide range of specialists general practitioners, therapists, gastroenterologists, coloproctologists all who face the manifestations of these diseases in everyday practice and determine the diagnostic and therapeutic algorithm. Current paper provides agreed statements of IAPWG Consensus and comments (in italics) of Russian experts on real-world practice, mainly on methodology of examination. These comments in no way intended to detract from the provisions agreed by the international group of experts. We hope that these comments will help to improve the quality of examination based on the systematization of local experience with the use of the methods discussed and the results obtained. Key recommendations: the International Anorectal Physiology Working Group protocol for the performance of anorectal function testing recommends a standardized sequence of maneuvers to test rectoanal reflexes, anal tone and contractility, rectoanal coordination, and rectal sensation. Major findings not seen in healthy controls defined by the classification are as follows: rectoanal areflexia, anal hypotension and hypocontractility, rectal hyposensitivity, and hypersensitivity. Minor and inconclusive findings that can be present in health and require additional information prior to diagnosis include anal hypertension and dyssynergia

    A Small-Molecule Inhibitor of T. gondii Motility Induces the Posttranslational Modification of Myosin Light Chain-1 and Inhibits Myosin Motor Activity

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains

    Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget

    Get PDF
    Permafrost environments within the Siberian Arctic are natural sources of the climate relevant trace gas methane. In order to improve our understanding of the present and future carbon dynamics in high latitudes, we studied the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community in permafrost deposits. For these investigations a permafrost core of Holocene age was drilled in the Lena Delta (72°22′N, 126°28′E). The organic carbon of the permafrost sediments varied between 0.6% and 4.9% and was characterized by an increasing humification index with permafrost depth. A high CH4 concentration was found in the upper 4 m of the deposits, which correlates well with the methanogenic activity and archaeal biomass (expressed as PLEL concentration). Even the incubation of core material at −3 and −6°C with and without substrates showed a significant CH4 production (range: 0.04–0.78 nmol CH4 h−1 g−1). The results indicated that the methane in Holocene permafrost deposits of the Lena Delta originated from modern methanogenesis by cold-adapted methanogenic archaea. Microbial generated methane in permafrost sediments is so far an underestimated factor for the future climate development
    corecore