9,434 research outputs found
Nonlocal Cooper pair Splitting in a pSn Junction
Perfect Cooper pair splitting is proposed, based on crossed Andreev
reflection (CAR) in a p-type semiconductor - superconductor - n-type
semiconductor (pSn) junction. The ideal splitting is caused by the energy
filtering that is enforced by the bandstructure of the electrodes. The pSn
junction is modeled by the Bogoliubov-de Gennes equations and an extension of
the Blonder-Tinkham-Klapwijk theory beyond the Andreev approximation. Despite a
large momentum mismatch, the CAR current is predicted to be large. The proposed
straightforward experimental design and the 100% degree of pureness of the
nonlocal current open the way to pSn structures as high quality sources of
entanglement
Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions
We theoretically investigate heat transport in hybrid normal
metal-superconductor (NS) nanojunctions focusing on the effect of thermal
rectification. We show that the heat diode effect in the junction strongly
depends on the transmissivity and the nature of the NS contact. Thermal
rectification efficiency can reach up to 123% for a fully-transmissive
ballistic junction and up to 84% in diffusive NS contacts. Both values exceed
the rectification efficiency of a NIS tunnel junction (I stands for an
insulator) by a factor close to 5 and 3, respectively. Furthermore, we show
that for NS point-contacts with low transmissivity, inversion of the heat diode
effect can take place. Our results could prove useful for tailoring heat
management at the nanoscale, and for mastering thermal flux propagation in
low-temperature caloritronic nanocircuitry.Comment: 4+ pages, 3 color figure
Fine structure of the local pseudogap and Fano effect for superconducting electrons near a zigzag graphene edge
Motivated by recent scanning tunneling experiments on zigzag-terminated
graphene this paper investigates an interplay of evanescent and extended
quasiparticle states in the local density of states (LDOS) near a zigzag edge
using the Green's function of the Dirac equation. A model system is considered
where the local electronic structure near the edge influences transport of both
normal and superconducting electrons via a Fano resonance. In particular, the
temperature enhancement of the critical Josephson current and 0-pi transitions
are predicted.Comment: 5 pages, 5 figures, to be published in Phys. Rev.
Re-entrant localization of single particle transport in disordered Andreev wires
We study effects of disorder on the low energy single particle transport in a
normal wire surrounded by a superconductor. We show that the heat conductance
includes the Andreev diffusion decreasing with increase in the mean free path
and the diffusive drift produced by a small particle-hole asymmetry,
which increases with increasing . The conductance thus has a minimum as a
function of which leads to a peculiar re-entrant localization as a
function of the mean free path.Comment: 4 pages, 2 figure
Crossed Andreev reflection in diffusive contacts
Crossed Andreev reflection in multiterminal structures in the diffusive
regime is addressed within the quasiclassical Keldysh-Usadel formalism. The
elastic cotunneling and crossed Andreev reflection of quasiparticles give
nonlocal currents and voltages (depending on the actual biasing of the devices)
by virtue of the induced proximity effect in the normal metal electrodes. The
magnitude of the nonlocal processes is found to scale with the square of the
barrier transparency and to decay exponentially with interface spacing.
Nonlocal cotunneling and crossed Andreev conductances are found to contribute
equally to the nonlocal current, which is of relevance to the use of normal
metal-superconducting heterostructures as sources of entanglement
Ferromagnetic features on zero-bias conductance peaks in ferromagnet/insulator/superconductor junction
We present a formula for tunneling conductance in ballistic
ferromagnet/ferromagnetic insulator/superconductor junctions where the
superconducting state has opposite spin pairing symmetry. The formula can
involve correctly a ferromagnetism has been induced by effective mass
difference between up- and down-spin electrons. Then, this effective mass
mismatch ferromagnet and standard Stoner ferromagnet have been employed in this
paper. As an application of the formulation, we have studied the tunneling
effect for junctions including spin-triplet p-wave superconductor. The
conductace spectra show a clear difference between two ferromagnets depending
upon the way of normalization of the conductance. Especially, a essential
difference is seen in zero-bias conductance peaks reflecting characteristics of
each ferromagnets. From obtained results, it will be suggested that the
measurements of the tunneling conductance in the junction provide us a useful
information about the mechanism of itinerant ferromagnetism in metal.Comment: 8 pages, 8 figures, references added to the first versio
On the spectrum of facet crystallization waves at the smooth 4He crystal surface
The wavelike processes of crystallization and melting or crystallization
waves are well known to exist at the 4He crystal surface in the rough state.
Much less is known about crystallization waves for the 4He crystal surface in
the smooth well-faceted state below the roughening transition temperature. To
meet the lack, we analyze here the spectrum of facet crystallization waves and
its dependence upon the wavelength, perturbation amplitude, and the number of
possible facet steps distributed somehow over the wavelength. All the
distinctive features of facet crystallization waves from conventional waves at
the rough surface result from a nonanalytic cusplike behavior in the angle
dependence for the surface tension of smooth crystal facets.Comment: 7 pages, 3 figures, 1 tabl
Andreev reflections on Y1-xCaxBa2Cu3O7-delta evidence for an unusual proximity effect
We have measured Andreev reflections between an Au tip and
Y_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7 - \delta} thin films in the in-plane orientation.
The conductance spectra are best fitted with a pair potential having the
"d_{x^{2}-y^{2}+is" symmetry. We find that the amplitude of the "is" component
is enhanced as the contact transparency is increased. This is an indication for
an unusual proximity effect that modifies the pair potential in the
superconductor near the surface with the normal metal.Comment: 4 pages, 4 figure
Estimation of the particle-antiparticle correlation effect for pion production in heavy ion collisions
Estimation of the back-to-back pi-pi correlations arising due to evolution of
the pionic field in the course of pion production process is given for central
heavy nucleus collisions at moderate energies.Comment: 6 LaTeX pages + 5 ps figure
- …