102 research outputs found

    Hydrogen storage and distribution systems

    Get PDF
    Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or batch wise by ships, trucks, railway or airplanes. All batch transportation requires a storage system but also pipelines can be used as pressure storage system. Hydrogen exhibits the highest heating value per weight of all chemical fuels. Furthermore, hydrogen is regenerative and environment friendly. There are two reasons why hydrogen is not the major fuel of toady's energy consumption: First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water. This implies that we have to pay for this energy, which results in a difficult economic task, because since the industrialization we are used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is the low critical temperature of 33K, i.e. hydrogen is a gas at room temperature. For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage system is crucial. Hydrogen can be stored by six different methods and phenomena: high pressure gas cylinders (up to 800bar), liquid hydrogen in cryogenic tanks (at 21K), adsorbed hydrogen on materials with a large specific surface area (at T< 100K), absorbed on interstitial sites in a host metal (at ambient pressure and temperature), chemically bond in covalent and ionic compounds (at ambient pressure), oxidation of reactive metals e.g. Li, Na, Mg, Al, Zn with water. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Finally, the metal hydroxides can be thermally reduced to the metals in a solar furnac

    Hydrogen storage methods

    Get PDF
    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800bar), (2) liquid hydrogen in cryogenic tanks (at 21K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20MPa (200bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80MPa (800bar) and therefore the hydrogen gas can reach a volumetric density of 36kg·m−3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2K and ambient pressure. Due to the low critical temperature of hydrogen (33K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8kg·m−3, and large volumes, where the thermal losses are small, can cause hydrogen to reach a system mass ratio close to one. The highest volumetric densities of hydrogen are found in metal hydrides. Many metals and alloys are capable of reversibly absorbing large amounts of hydrogen. Charging can be done using molecular hydrogen gas or hydrogen atoms from an electrolyte. The group one, two and three light metals (e.g. Li, Mg, B, Al) can combine with hydrogen to form a large variety of metal-hydrogen complexes. These are especially interesting because of their light weight and because of the number of hydrogen atoms per metal atom, which is two in many cases. Hydrogen can also be stored indirectly in reactive metals such as Li, Na, Al or Zn. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Since water is the product of the combustion of hydrogen with either oxygen or air, it can be recycled in a closed loop and react with the metal. Finally, the metal hydroxides can be thermally reduced to metals in a solar furnace. This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitation

    L'hidrogen, el vector energĂštic del futur, amb Andreas ZĂŒttel

    Get PDF
    "Amb l'hidrogen podem generar combustible completament verd". La necessitat d'invertir en energies renovables Ă©s un fet: el consum dels combustibles fĂČssils Ă©s un milĂł de vegades mĂ©s rĂ pid que el ritme de producciĂł natural. L'hidrogen Ă©s un dels candidats a vector d'energia renovable del futur: tĂ© una densitat d'energia tres vegades superior a la dels combustibles fĂČssils i el tenim en grans quantitats a la natura (l'aigua n'Ă©s la principal font). El repte Ă©s, perĂČ, emagatzemar-lo de manera energĂšticament eficient i compacta. Andreas ZĂŒttel, cap del grup "Hidrogen i Energia" a l'Institut Nacional SuĂ­s per a la CiĂšncia i Tecnologia de Materials (EMPA), i president de l'AssociaciĂł SuĂŻssa per l'Hidrogen "HYDROPOLE", ha participat en el "Simposi internacional sobre energia, sostenibilitat i medi ambient", organitzat a la UAB amb motiu del XĂš aniversari de MATGAS, i des deLa necesidad de invertir en energĂ­as renovables es un hecho: el consumo de los combustibles fĂłsiles es un millĂłn de veces mĂĄs rĂĄpido que el ritmo de producciĂłn natural. El hidrĂłgeno es uno de los candidatos a portador de energĂ­a renovable del futuro: tiene una densidad de energĂ­a tres veces superior a la de los combustibles fĂłsiles y lo tenemos en grandes cantidades en la naturaleza (el agua es la fuente principal). El reto es, sin embargo, almacenarlo de forma energĂ©ticamente eficiente y compacta. Andreas ZĂŒttel, jefe del grupo "HidrĂłgeno y EnergĂ­a" en el Instituto Nacional Suizo para la Ciencia y TecnologĂ­a de los Materiales (EMPA), y presidente de la asociaciĂłn suiza "HYDROPOLE", ha participado en el "Simposio internacional sobre energĂ­a, sostenibilidad y medio ambiente", organizado en la UAB con motivo del X aniversario de MATGAS, y UABDivulga aprovechĂł para entrevistarlo.The need to invest in renewable energy is a fact. The consumption of fossil fuels is a million of times faster than the rate of natural production. Hydrogen is one of the candidates as a renewable energy carrier in the future: its energy density is three times greater than that of fossil fuels and it exists in large quantities in nature (water being the main source). The challenge is, however, to store it in an energy efficient and compact way. Andreas ZĂŒttel, head of the "Hydrogen & Energy" Division at Swiss Federal Laboratories for materials Science and Tecnology (EMPA), and president of the Swiss Association for Hydrogen "HYDROPOLE", participated in the "International Symposium on Energy, Environment and Sustainability", organized at the UAB in occasion of the tenth anniversary of MATGAS, where UABDivulga had the chance to interview him

    Evolution of metal catalyst during CVD synthesis of carbon nanotubes

    Get PDF
    La dĂ©couverte rĂ©volutionnaire des nanotubes de carbone (CNT) en 1991 a provoquĂ© une intensification des travaux de recherche dans le domaine de la science du carbone. Les propriĂ©tĂ©s fascinantes de ce matĂ©riau offrent une multitude d’applications potentielles, par exemple comme Ă©metteur de champs, conducteur uni-dimensionnel, condensateur haute capacitĂ© (“supercap”), fibres de renforcement ou encore comme rĂ©servoir d’hydrogĂšne. MalgrĂ© d’immenses progrĂšs techniques, l’amĂ©lioration des mĂ©thodes de synthĂšse en vue d’une application commerciale est encore au centre des recherches. La technique de dĂ©pĂŽt en phase vapeur (CVD) est un candidat prometteur. Dans cette technique, la nuclĂ©ation et la croissance des CNTs sont induites par la dĂ©composition de gaz carburĂ©s (CO, CO2, C2H2, etc.) sur un catalyseur mĂ©tallique Ă  des tempĂ©ratures comprises entre 600°C et 1200°C. La CVD est largement utilisĂ©e pour la fabrication Ă  grande Ă©chelle de CNTs et beaucoup de progrĂšs ont Ă©tĂ© faits en ce qui concerne la quantitĂ©, les frais de synthĂšse et la puretĂ© des produits. Toutefois, le mĂ©canisme de croissance des nanotubes par CVD reste peu connu. La diffusion du carbone Ă  travers le catalyseur mĂ©tallique est souvent considĂ©rĂ©e comme l’étape dĂ©terminante lors de la croissance des CNTs. Les mĂ©taux les plus rĂ©actifs sont le fer, le cobalt et le nickel, mais leur effet catalytique est dĂ©pendant de plusieurs facteurs tels que la nature du prĂ©curseur, le substrat utilisĂ© et les gaz de rĂ©action. La nature chimique actuelle du catalyseur actif est trĂšs controversĂ©e; on ne sait pas par exemple s’il est prĂ©sent sous forme de mĂ©tal, de carbure ou en phase mĂ©langĂ©e. Jusqu’à prĂ©sent, trĂšs peu d’analyses insitu de l’évolution chimique et morphologique du catalyseur durant le processus CVD ont Ă©tĂ© faites. Le comportement de catalyseurs Ă  base de nickel, cobalt, chrome ou molybdĂšne a Ă©tĂ© analysĂ© sous une atmosphĂšre azote/acĂ©tylĂšne ou azote/acĂ©tylĂšne/ hydrogĂšne Ă  des tempĂ©ratures de 600°C et de 750°C. Pour mieux comprendre les propriĂ©tĂ©s des phases mĂ©talliques pendant le processus de synthĂšse, un diffractomĂštre Ă  rayons X Ă©quipĂ© avec une table chauffante et un systĂšme de contrĂŽle atmosphĂ©rique a Ă©tĂ© utilisĂ© pour Ă©tudier in-situ l’évolution des revĂȘtements de nitrate mĂ©tallique. Les Ă©chantillons ont Ă©tĂ© ensuite trempĂ©s Ă  diffĂ©rents stades de pyrolyse pour ĂȘtre finalement observĂ©s au MEB et MET. Les images au microscope ont montrĂ© que le nickel ainsi que le cobalt et le molybdĂšne peuvent agir comme catalyseurs pour la nuclĂ©ation et la croissance des CNTs, cepandant pas le chrome. La rĂ©duction de la taille des grains rĂ©sultant d’une perte suffisante de volume solide pendant les rĂ©actions rĂ©dox dans le prĂ©curseur catalytique, ainsi que la transformation de ces prĂ©curseurs en une phase mĂ©tallique sont les principales conditions nĂ©cessaires Ă  la croissance de CNTs. Les stades de rĂ©action observĂ©s pendant la rĂ©duction du prĂ©curseur ont Ă©tĂ© mis en relation avec la nuclĂ©ation et la croissance des nanotubes. La diffusion de carbone Ă  travers les particules mĂ©talliques, marquĂ©e par un agrandissement des paramĂštres cellulaires du mĂ©tal et identifiĂ©e sur les diffractogrammes par un dĂ©placement des pics, est observĂ©e Ă  chaque fois que des nanotubes de carbone sont gĂ©nĂ©rĂ©s. Avec le nickel et le cobalt, aucune phase de carbure ne s’est formĂ©e. Avec le fer, la dĂ©composition des phases mĂ©tastables de carbure agit comme une seconde activation de la croissance des nanotubes alors que le molybdĂšne va favoriser la formation de carbures qui vont stopper la croissance des CNTs aprĂšs 20 minutes. Dans tous les cas, il a Ă©tĂ© dĂ©montrĂ© qu’un traitement prĂ©liminaire Ă  l’hydrogĂšne favorise la croissance des nanotubes.Die revolutionĂ€re Entdeckung von Kohlenstoff- Nanoröhrchen (CNT) im Jahre 1991 liess die Forschungsarbeiten im Bereich der Kohlenstoffwissenschaft intensivieren. Die faszinierenden Eigenschaften dieses einzigartigen Materials ermöglichten eine Vielzahl von potenziellen Anwendungen wie zum Beispiel als Elektronen Feldemissionsquelle, eindimensionale Konduktoren, SuperkapazitĂ€ten, VerstĂ€rkungsfaden oder Wasserstoffspeicher. Trotz der atemberaubenden technischen Fortschritte bemĂŒht man sich immer noch um die Entwicklung einer Synthesemethode fĂŒr die kommerzielle Anwendung. Ein vielversprechender Kandidat ist die Technik der chemischen Gasphasenabscheidung (CVD). Die Keimbildung und das Wachstum von CNTs werden induziert durch die Zersetzung von kohlenstoffhaltigen Gasen (CO, CO2, C2H2, usw.) ĂŒber einem metallischen Katalysator bei Temperaturen zwischen 600°C und 1200°C. CVD ist eine weit verbreitete Technik fĂŒr die Fabrikation von CNT in grossen QuantitĂ€ten und Fortschritte betreffend der Menge, der Synthesekosten und der Reinheit der Produkte, wurden erzielt. Doch das grosse RĂ€tsel der CVD Methode bleibt der Wachstumsmechanismus. Der Hauptreaktionsschritt fĂŒr das Wachstum von Nanoröhrchen scheint die Diffusion von Kohlenstoff durch den Metallkatalysator zu sein. Die reaktivsten Metalle sind Eisen, Kobalt und Nickel, doch deren katalytische Wirkung ist abhĂ€ngig von der Art des Ausgangsmaterials, des benutzten Substrates und der Reaktionsgase. Sehr umstritten ist die aktuelle chemische Beschaffenheit des aktiven Katalysators, zum Beispiel ob er als Metall, Karbid oder als gemischte Phase vorliegt. Bis jetzt wurden nur sehr wenige in-situ Analysen der chemischen und morphologischen Evolution des Katalysators wĂ€hrend des CVD Prozesses durchgefĂŒhrt. Diese Doktorarbeit befasst sich mit der Evolution von nickel-, kobalt-, chrom- und molybdĂ€nbasierenden Katalysatoren unter Stickstoff/Acetylen und Stickstoff/Acetylen/Wasserstoff AtmosphĂ€re bei 600°C und 750°C. Um die Eigenschaften von metallischen Phasen wĂ€hrend des Syntheseablaufs aufzuklĂ€ren, wurde ein Röntgendiffraktometer mit einem Heiztisch und einem AtmosphĂ€renkontrollsystem ausgestattet, welches das in-situ Studium der Evolution von Metallnitrat-Filmen ermöglicht. Die Proben wurden dafĂŒr bei verschiedenen Pyrolysezeiten abgeschreckt und im REM und TEM untersucht. Die Mikroskopiebilder zeigen, dass Nickel sowie Kobalt und MolybdĂ€n unter typischen Nanoröhrchen Synthesebedingungen als Katalysatoren fĂŒr CNTs Keimbildung und Wachstum agieren können, jedoch nicht Chrom. Korngrössenreduktion, resultierend aus dem ausreichenden Festkörpervolumenverlust wĂ€hrend der Redox Reaktion im katalytischen Ausgangsmaterial, und die Transformation des Ausgangsmaterials zu einer metallischen Phase sind die Hauptvoraussetzungen fĂŒr das CNT Wachstum. Die beobachteten Reaktionsabschnitte wĂ€hrend der Reduktion des Ausgangsmaterials werden in Verbindung gebracht mit der Keimbildung und dem Wachstum von Nanoröhrchen. Kohlenstoffdiffusion durch die metallischen Partikel, angezeigt durch eine Vergrösserung der Zellparameter des Metalls und identifiziert in Diffraktogramme als Peak- Verschiebung, wurde beobachtet wann immer CNTs gebildet wurden. Im Nickel- und Kobaltsystem wurden keine Karbidphasen entdeckt. Doch im Vergleich zum Eisensystem, wo die Zerlegung von metastabilem Karbid als zweiter Schub von Nanoröhrchen Bildung dient, wird das CNT Wachstum im MolybdĂ€nsystem nach der Bildung von Karbiden nach 20 Minuten gestoppt. In jedem Fall begĂŒnstigt eine Vorbehandlung mit Wasserstoff die Nanoröhrchen Bildung.The revolutionary discovery of carbon nanotubes (CNT) in 1991 led to intense research activities in the domain of carbon science. The fascinating properties of these unique material has opened a great number of potential applications e.g. as electron field emitters, one-dimensional conductors, supercapacitors, reinforcing fibres or hydrogen storage. Despite these stunning technical progresses there is still much struggle in the development of a synthesis method suitable for commercial applications. A leading candidate is the chemical vapour deposition (CVD) technique. Nucleation and growth of CNTs are induced by the decomposition of carbon-containing gases (CO, CO2, C2H2, etc) over a metallic catalyst at temperatures between 600°C and 1200°. CVD is a widely used technique to generate CNTs in large quantities and much progress has been made from the point of view of the yield, the synthesis costs or the purity of the products. But the great conundrum of CVD process remains the growth mechanism. A key reaction step for nanotube growth seems to be diffusion of carbon through the metal catalyst and the most active metals are iron, cobalt and nickel but their catalytic action depends on the type of precursor, the type of substrate and of the reactive gases used. Highly controversial is the actual chemical nature of the active catalyst e.g. if it is present as metal, carbide or as mixed phase. So far few investigations of the chemical and morphological evolution of the catalyst during CVD process have been performed. This thesis focuses on the evolution of nickel-, cobalt-, chromium- and molybdenum-based catalysts under a nitrogen/acetylene and a nitrogen/acetylene/ hydrogen atmosphere at 600°C and 750°C. In order to elucidate the nature of the catalyst during synthesis runs an X-ray diffractometer equipped with a heating stage and an atmosphere controlling system was used to study in-situ the evolution of metal nitrate films. Samples quenched after different pyrolysis time were investigated by SEM and TEM. The microscopic images showed that nickel, cobalt and molybdenum can act under typical nanotube synthesis conditions as catalyst for CNT nucleation and growth, but not chromium. Grain size reduction resulting from a sufficient solid volume loss during redox reactions in the catalyst precursor and the transformation of these precursors to a metallic phase are the main requirements for nanotube growth. The reaction sequences observed during the reduction of the precursor are put in relation with the nucleation and growth of nanotubes. Diffusion of carbon through the metal particle, indicated by an increase of metal cell parameters identified in diffractograms as peak shifts, was observed whenever carbon nanotubes were generated. In the nickel and cobalt system no carbide phases were detected. In contrast to the iron system, where the break-down of metastable carbides act as a second boost of nanotube formation, the appearance of carbides in the molybdenum system after 20 minutes stops further carbon nanotube growth. In any case hydrogen pre-treatment promotes nanotube growth

    Storage of Renewable Energy by Reduction of CO2 with Hydrogen

    Get PDF
    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m3 which limits the energy density to about half of the energy density in fossil fuels. Introducing CO2 into the cycle and storing hydrogen by the reduction of CO2 to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO2 neutral) if CO2 is extracted from the atmosphere. Today's technology allows CO2 to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer–Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO2 from the atmosphere close to the thermodynamic limit and to reduce CO2 with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with nanopores and the unique surface structures of metallic clusters offer new opportunities for the production of synthetic fuels

    Dehydriding and rehydriding reactions of LiBH₄

    Get PDF
    Structural differences in LiBH₄ before and after the melting reaction at approximately 550 K were investigated to clarify the experimental method for the confirmation of reversible dehydriding and rehydriding reactions. Since the long-range order of LiBH₄ begins to disappear after the melting reaction was achieved, investigation of the atomistic vibrations of the [BH₄]-anion in LiBH₄ was found to be effective for the confirmation of the reversibility. In the present study, LiBH₄ was successively dehydrided (decomposed) into LiH and B under 1 MPa of hydrogen at 873 K, and then rehydrided (recombined) into LiBH₄ under 35 MPa of hydrogen at the same temperature (873 K). The temperatures at the beginning and ending of the dehydriding reaction are lowered, by approximately 30 K, for LiBH₄ substituted (or mixed) with Mg (atomic ratio of Li:Mg=9:1) as compared to those for LiBH₄ alone. This is similar to the tendency exhibited by LiNH₂

    Hydrogen Dynamics in Lightweight Tetrahydroborates

    Get PDF
    The high hydrogen content in complex hydrides such as M[AlH4]x and M[BH4]x (M = Li, Na,K, Mg, Ca) stimulated many research activities to utilize them as hydrogen storage materials. An understanding of the dynamical properties on themolecular level is important to understand and to improve the sorption kinetics. Hydrogen dynamics in complex hydrides comprise long range translational diffusion as well as localized motions like vibrations, librations or rotations. All the different motions are characterized by their specific length- and timescales. Within this review we give an introduction to the physical properties of lightweight complex hydrides and illustrate the huge variety of dynamical phenomena on selected example

    In situ Control of the Adsorption Species in CO2 Hydrogenation: Determination of Intermediates and Byproducts

    Get PDF
    CO2 hydrogenation over catalysts is a potentially exciting method to produce fuels while closing the CO2 cycle and mitigating global warming. The mechanism of this process has been controversial due to the difficulty in clearly identifying the species present and distinguishing which are reaction intermediates and which are byproducts. We in situ manipulated the independent formation and hydrogenation of each adsorption species produced in CO2 hydrogenation reaction over Ru/Al2O3 using operando diffuse reflectance infrared Fourier transformation spectroscopy (DRIFTS) and executed a novel iterative Gaussian fitting procedure. The adsorption species and their role in the CO2 hydrogenation reaction have been clearly identified. The adsorbed carbon monoxide (CO*) of four reactive structures was the key intermediate of methane (CH4) production. Bicarbonate (HCO3–*), formed on the metal–support interface, appeared to be not only the primary product of CO2 chemisorption but also a reservoir of CO* and consisted of the dominate reaction steps of CO2 methanation from the interface to the metal surface. Bidentate formate (Bi-HCOO–*) formed on Ru under a certain condition, consecutively converting to CO* to merge into the subsequent methanation process. Nonreactive byproducts of the reaction were also identified. The evolution of the surface species revealed the essential steps of the CO2 activation and hydrogenation reactions which were inevitably initiated from HCO3–* to CO* and finally from CO* to CH4
    • 

    corecore