106 research outputs found

    Understanding and Modelling Rapid Dynamic Changes of Tidewater Outlet Glaciers: Issues and Implications

    Get PDF
    Recent dramatic acceleration, thinning and retreat of tidewater outlet glaciers in Greenland raises concern regarding their contribution to future sea-level rise. These dynamic changes seem to be parallel to oceanic and climatic warming but the linking mechanisms and forcings are poorly understood and, furthermore, large-scale ice sheet models are currently unable to realistically simulate such changes which provides a major limitation in our ability to predict dynamic mass losses. In this paper we apply a specifically designed numerical flowband model to Jakobshavn Isbrae (JIB), a major marine outlet glacier of the Greenland ice sheet, and we explore and discuss the basic concepts and emerging issues in our understanding and modelling ability of the dynamics of tidewater outlet glaciers. The modelling demonstrates that enhanced ocean melt is able to trigger the observed dynamic changes of JIB but it heavily relies on the feedback between calving and terminus retreat and therefore the loss of buttressing. Through the same feedback, other forcings such as reduced winter sea-ice duration can produce similar rapid retreat. This highlights the need for a robust representation of the calving process and for improvements in the understanding and implementation of forcings at the marine boundary in predictive ice sheet models. Furthermore, the modelling uncovers high sensitivity and rapid adjustment of marine outlet glaciers to perturbations at their marine boundary implying that care should be taken in interpreting or extrapolating such rapid dynamic changes as recently observed in Greenlan

    Application of control methods for modelling the flow of Pine Island Glacier, West Antarctica

    Full text link
    The distribution of basal traction on a transect along Pine Island Glacier, West Antarctica, is estimated by inverting observed surface velocities using a control method and a simple numerical stream-flow model. This model calculates the horizontal flow along a transect, based on the assumptions that the horizontal flow is independent of ice depth and that the driving stresses are balanced by resistive forces at the glacier bed and margin and by gradients in longitudinal stress. Basal traction is assumed to be linearly related to the basal velocity. For the lateral shear traction a parameterization based on an inversion of Glen's flow law is used. The application of the control method allows us to calculate the set of model parameters (e.g. the basal friction coefficient) that gives the best fit between modelled and observed surface velocities. The model is used to investigate the stress regime of Pine Island Glacier, in particular to estimate the importance of basal, lateral and longitudinal stresses relative to each other. In the flat region just behind the grounding line, basal drag, lateral drag and the longitudinal stress gradient are the same order of magnitude. In the steep region up-glacier from the grounding line, the driving stresses are highest and balanced predominantly by basal resistive stresses. Further upstream, in the trunk of the glacier, lateral and basal drag predominate

    The control of short-term ice mélange weakening episodes on calving activity at major Greenland outlet glaciers

    Full text link
    The dense mixture of iceberg of various sizes and sea ice observed in many of Greenland's fjords, called ice mĂ©lange (sikussak in Greenlandic), has been shown to have a significant impact on the dynamics of several Greenland tidewater glaciers, mainly through the seasonal support it provides to the glacier terminus in winter. However, a clear understanding of shorter-term ice mĂ©lange dynamics is still lacking, mainly due to the high complexity and variability of the processes at play at the ice–ocean boundary. In this study, we use a combination of Sentinel-1 radar and Sentinel-2 optical satellite imagery to investigate in detail intra-seasonal ice mĂ©lange dynamics and its link to calving activity at three major outlet glaciers: Kangerdlugssuaq Glacier, Helheim Glacier and Sermeq Kujalleq in Kangia (Jakobshavn IsbrĂŠ). In those fjords, we identified recurrent ice mĂ©lange weakening (IMW) episodes consisting of the up-fjord propagation of a discontinuity between jam-packed and weaker ice mĂ©lange towards the glacier terminus. At a late stage, i.e., when the IMW front approaches the glacier terminus, these episodes were often correlated with the occurrence of large-scale calving events. The IMW process is particularly visible at the front of Kangerdlugssuaq Glacier and presents a cyclic behavior, such that we further analyzed IMW dynamics during the June–November period from 2018 to 2021 at this location. Throughout this period, we detected 30 IMW episodes with a recurrence time of 24 d, propagating over a median distance of 5.9 km and for 17 d, resulting in a median propagation speed of 400 m d−1. We found that 87 % of the IMW episodes occurred prior to a calving event visible in spaceborne observations and that ∌75 % of all detected calving events were preceded by an IMW episode. These results therefore present the IMW process as a clear control on the calving activity of Kangerdlugssuaq Glacier. Finally, using a simple numerical model for ice mĂ©lange motion, we showed that a slightly biased random motion of ice floes without fluctuating external forcing can reproduce IMW events and their cyclic influence and explain observed propagation speeds. These results further support our observations in characterizing the IMW process as self-sustained through the existence of an IMW–calving feedback. This study therefore highlights the importance of short-term ice mĂ©lange dynamics in the longer-term evolution of Greenland outlet glaciers

    Co-detection of micro seismic activity as early warning of gravitational slope failure

    Full text link
    We developed a new strategy for Disaster Risk Reduction for gravitational slope failure: We propose a simple method for real-time early warning of gravity-driven failures that considers and exploits both the heterogeneity of natural media and characteristics of acoustic emissions attenuation. This method capitalizes on co-detection of elastic waves emanating from micro-cracks by a network of multiple and spatially distributed sensors. Event co-detection is considered as surrogate for large event size with more frequent co-detected events marking imminence of catastrophic failure. In this study we apply this method to a steep rock glacier / debris slope and demonstrate the potential of this simple strategy for real world cases, i.e. at slope scale. This low cost, robust and autonomous system provides a well adapted alternative/complementary solution for Early Warning Systems.Comment: 11 pages, 8 figure

    Observational constraints on the sensitivity of two calving glaciers to external forcings

    Full text link
    Future mass loss projections of the Greenland ice sheet require understanding of the processes at a glacier terminus, especially of iceberg calving. We present detailed and high-rate terrestrial radar interferometer observations of Eqip Sermia and Bowdoin Glacier, two outlet glaciers in Greenland with comparable dimensions and investigate iceberg calving, surface elevation, velocity, strain rates and their links to air temperature, tides and topography. The results reveal that the two glaciers exhibit very different flow and calving behaviour on different timescales. Ice flow driven by a steep surface slope with several topographic steps leads to high velocities, areas of extension and intense crevassing, which triggers frequent but small calving events independent of local velocity gradients. In contrast, ice flow under smooth surface slopes leaves the ice relatively intact, such that sporadic large-scale calving events dominate, which initiate in areas with high shearing. Flow acceleration caused by enhanced meltwater input and tidal velocity variations were observed for terminus sections close to floatation. Firmly grounded terminus sections showed no tidal signal and a weak short-term reaction to air temperature. These results demonstrate reaction timescales to external forcings from hours to months, which are, however, strongly dependent on local terminus geometry

    Deep learning speeds up ice flow modelling by several orders of magnitude

    Get PDF
    This paper introduces the Instructed Glacier Model (IGM) – a model that simulates ice dynamics, mass balance and its coupling to predict the evolution of glaciers, icefields or ice sheets. The novelty of IGM is that it models the ice flow by a Convolutional Neural Network, which is trained from data generated with hybrid SIA + SSA or Stokes ice flow models. By doing so, the most computationally demanding model component is substituted by a cheap emulator. Once trained with representative data, we demonstrate that IGM permits to model mountain glaciers up to 1000 × faster than Stokes ones on Central Processing Units (CPU) with fidelity levels above 90% in terms of ice flow solutions leading to nearly identical transient thickness evolution. Switching to the GPU often permits additional significant speed-ups, especially when emulating Stokes dynamics or/and modelling at high spatial resolution. IGM is an open-source Python code which deals with two-dimensional (2-D) gridded input and output data. Together with a companion library of trained ice flow emulators, IGM permits user-friendly, highly efficient and mechanically state-of-the-art glacier and icefields simulations

    Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age

    Get PDF
    This research has been supported by the Swiss National Science Foundation “Understanding and quantifying the transient dynamics and evolution of debris-covered glaciers” (grant no. 200021_169775).Debris-covered glaciers generally exhibit large, gently sloping, slow-flowing tongues. At present, many of these glaciers show high thinning rates despite thick debris cover. Due to the lack of observations, most existing studies have neglected the dynamic interactions between debris cover and glacier evolution over longer time periods. The main aim of this study is to reveal such interactions by reconstructing changes of debris cover, glacier geometry, flow velocities, and surface features of Zmuttgletscher (Switzerland), based on historic maps, satellite images, aerial photographs, and field observations. We show that debris cover extent has increased from ∌13 % to ∌32 % of the total glacier surface since 1859 and that in 2017 the debris is sufficiently thick to reduce ablation compared to bare ice over much of the ablation area. Despite the debris cover, the glacier-wide mass balance of Zmuttgletscher is comparable to that of debris-free glaciers located in similar settings, whereas changes in length and area have been small and delayed by comparison. Increased ice mass input in the 1970s and 1980s resulted in a temporary velocity increase, which led to a local decrease in debris cover extent, a lowering of the upper boundary of the ice-cliff zone, and a strong reduction in ice-cliff area, indicating a dynamic link between flow velocities, debris cover, and surface morphology. Since 2005, the lowermost 1.5 km of the glacier has been quasi-stagnant, despite a slight increase in the surface slope of the glacier tongue. We conclude that the long-term glacier-wide mass balance is mainly governed by climate. The debris cover governs the spatial pattern of elevation change without changing its glacier-wide magnitude, which we explain by the extended ablation area and the enhanced thinning in regions with thin debris further up-glacier and in areas with abundant meltwater channels and ice cliffs. At the same time rising temperatures lead to increasing debris cover and decreasing ice flux, thereby attenuating length and area losses.Publisher PDFPeer reviewe

    Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, Antarctica

    Get PDF
    The Weddell Sea sector of the Antarctic Ice Sheet is hypothesized to have made a significant contribution to sea-level rise since the Last Glacial Maximum. Using a numerical flowline model we investigate the controls on grounding line motion across the eastern Weddell Sea and compare our results with field data relating to past ice extent. Specifically, we investigate the influence of changes in ice temperature, accumulation, sea level, ice shelf basal melt, and ice shelf buttressing on the dynamics of the Foundation Ice Stream. We find that ice shelf basal melt plays an important role in controlling grounding line advance, while a reduction in ice shelf buttressing is found to be necessary for grounding line retreat. There are two stable positions for the grounding line under glacial conditions: at the northern margin of Berkner Island and at the continental shelf break. Global mean sea-level contributions associated with these two scenarios are ~50 mm and ~130 mm, respectively. Comparing model results with field evidence from the Pensacola Mountains and the Shackleton Range, we find it unlikely that ice was grounded at the continental shelf break for a prolonged period during the last glacial cycle. However, we cannot rule out a brief advance to this position or a scenario in which the grounding line retreated behind present during deglaciation and has since re-advanced. Better constraints on past ice sheet and ice shelf geometry, ocean temperature, and ocean circulation are needed to reconstruct more robustly past behavior of the Foundation Ice Stream
    • 

    corecore