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3Université Côte d’Azur and INRIA,
Sophia-Antipolis, France

4Geophysical Institute, University of Alaska
Fairbanks, Fairbanks, AK, USA

5Visiting Researcher, Department of Glaciology and
Climate, Geological Survey of Denmark and

Greenland

Abstract

This paper introduces the Instructed Glacier Model
(IGM) — a model that simulates ice dynamics, mass
balance, and its coupling to predict the evolution of
glaciers, icefields, or ice sheets. The novelty of IGM is
that it models the ice flow by a convolutional neural
network, which is trained from data generated with
hybrid SIA+SSA or Stokes ice flow models. By do-
ing so, the most computationally demanding model
component is substituted by a cheap emulator. Once
trained with representative data, we demonstrate that
IGM permits to model mountain glaciers up to 1000×
faster than Stokes ones on CPU with fidelity levels
above 90% in terms of ice flow solutions leading to
nearly identical transient thickness evolution. Switch-
ing to the GPU often permits additional significant
speed-ups, especially when emulating Stokes dynam-
ics or/and modelling at high spatial resolution. IGM
is an open-source Python code which deals with two-
dimensional gridded input and output data. Together
with a companion library of trained ice flow emula-
tors, IGM permits user-friendly, highly efficient, and
mechanically state-of-the-art glacier and icefields sim-
ulations.

1 Introduction

Glacier and ice sheet models are valuable tools to
assess their future evolution and the resulting sea-
level rise under climate warming [Pattyn, 2018]. In
the past two decades, tremendous efforts have been
made by the glaciological community to develop mod-
els to account for the most relevant underlying phys-
ical processes such as ice flow, thermodynamics, sub-
glacial hydrology and their coupling with the atmo-
sphere (e.g. climate-driven surface mass balance), the
lithosphere, and the ocean (e.g. iceberg calving or
subaquatic melt). However, the added complexity
of these models comes with increasing computational
cost, which cannot be offset entirely by recent ad-
vances in scalable numerical methods and increasing
computing power.

Since the 1950’s, ice is commonly treated as a vis-
cous, non-Newtonian fluid [Glen, 1953] best described
by the Stokes equations, which are computationally
expensive to solve. Although numerical simulations
of real small glaciers have been possible since the late
1990s [e.g. Gudmundsson, 1999], the simulation of
large icefields and ice sheets at high spatial resolu-
tion and/or over multi-millennial time scales remains
challenging with today’s available computational re-
sources, with a few exceptions: Seddik and others
[2012] performed a 100-year of simulation of the en-
tire Greenland Ice Sheet while Cohen and others
[2018] modelled a few millennia of the former Rhone
Glacier at the Last Glacial Maximum with Elmer/-
Ice [Gagliardini and others, 2013]. As a consequence,
most models frequently solve computationally less ex-
pensive approximations to the Stokes equations.

The Shallow Ice Approximation [SIA; Hutter,
1983], a zeroth-order approximation to the Stokes
equations, remains a reference model for many ap-
plications [e.g. Maussion and others, 2019, Vǐsnjević
and others, 2020], despite strongly-simplifying me-
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chanical assumptions and applicability limited to ar-
eas where ice flow is dominated by vertical shearing
[Greve and Blatter, 2009]. As a compromise between
mechanical accuracy and computational costs, a fam-
ily of models of intermediate complexity has emerged
such as the hybrid SIA+SSA (Shallow Shelf Approx-
imation) [Bueler and Brown, 2009] implemented in
the Parallel Ice Sheet Model (PISM) [Khroulev and
the PISM Authors, 2020]. This class of approxima-
tions reduces the stress balance to at most 2D equa-
tions, thus facilitating simulations over time scales
of glacial cycles [Seguinot and others, 2018]. With
the exception of sub-glacial hydrology models [Werder
and others, 2013], the costs associated with the other
glacier-related model components (e.g., mass balance,
ice energy, lithospheric displacement, calving) remain
computationally low. Well-established and state-of-
the-art simulation tools such as PISM or Elmer/Ice
already use efficient and scalable numerical solvers,
thus limiting the potential for further improvements
in computational efficiency. Yet computational effi-
ciency in high-order ice flow modelling is crucial to i)
explore a large variety of model parameters, ii) model
long time scales in paleo applications, iii) refine the
spatial resolution when dealing with complex topog-
raphy, and iv) to reduce model biases where SIA-like
models are used today due to computational con-
straints.

In recent years, Graphics Processing Units (GPU),
which feature more but slower cores compared to Cen-
tral Processing Units (CPU), have gained interest in
ice flow modelling to overcome the aforementioned
limitations, and to obtain significant speed-ups [Räss
and others, 2020]. The key for using GPUs efficiently
is to implement numerical schemes that can be di-
vided into several thousand parallel tasks; a chal-
lenge regarding the viscous behaviour of ice, and the
underlying diffusion equations that describe its mo-
tion. To our knowledge, two approaches have been
attempted to achieve this high level of paralleliza-
tion. The first consisted of solving SIA [Vǐsnjević
and others, 2020] or Second Order SIA [Brædstrup
and others, 2014], explicitly in time, while the sec-
ond consisted of solving the Stokes equations using fi-
nite differences to take advantage of numerical stencil-
based techniques [Räss and others, 2020]. The first
approach permitted a large ensemble or long time-
scales simulations with applications to invert climatic
parameters from observed glacial extents at the last
glacial maximum [Vǐsnjević and others, 2020] and to

model glacial erosion and landscape evolution over
glacial cycle time-scales [Egholm and others, 2017].
The necessity of coding in a dedicated programming
language (e.g. CUDA) has probably hindered the use
of GPUs. However, the emergence of user-friendly
Python libraries such as TensorFlow and PyTorch,
which allow running relatively simple code on GPUs,
will certainly contribute to popularize it in the coming
years.

Compared to physic-based numerical models (re-
ferred here as instructor models), statistical emulators
(or surrogate models), which mimic the behavior of
the simulator as closely as possible, are computation-
ally cheap to evaluate. Surrogate models are solely
constructed from intelligently chosen input-output
data of the instructor model without any knowledge
of its inner working. The arrival of machine learn-
ing has led to the development of deep learning-based
surrogate models [Reichstein and others, 2019] to ac-
celerate computational fluid dynamics (CFD) codes
[e.g. Ladický and others, 2015, Tompson and others,
2019, Kim and others, 2019, Obiols-Sales and others,
2020]. The main idea is to take advantage of the large
amount of modelling results (data) that a CFD solver
can produce to train a neural network emulator deliv-
ering high fidelity solutions at much lower computa-
tional cost. The fidelity of the emulated solution, rela-
tive to the instructor model, is directly dictated by the
emulator complexity and the quality of the training
dataset, which must be representative of all dynami-
cal states. This approach can therefore be seen as a
way to compress a large number of model realizations
[Kim and others, 2019], and to take benefit of this in-
formation for new model runs that are fairly close to
the runs already performed in generating the training
dataset. With the exception of Brinkerhoff and oth-
ers [2021], this idea has never been exploited in ice
flow modelling. Yet—from a CFD point of view—the
most accurate and most expensive ice flow model, the
Stokes model, shows no major difficulties for its nu-
merical solving: it is a purely diffusive (although non-
linear) non-advective, time-independent problem, and
its solution solely depends on the geometry, and given
fields such as the ice hardness or the basal sliding
coefficient. Furthermore, the same solver often re-
computes states which are close to those which were
computed before for parameter studies [Aschwanden
and others, 2019] or multi-glacial cycle applications
[Sutter and others, 2019]. In such cases, the strategy
described above can be very beneficial to use previ-
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ously computed ice flow modelled states and save this
information to emulate a cheap model trained by deep
learning. This paper intends to explore the potential
of constructing ice flow model emulators.

In the machine learning paradigm, artificial neu-
ral networks have been increasingly used in recent
years to deal with various kinds of problems such as
image classification [Simonyan and Zisserman, 2015],
segmentation [Ronneberger and others, 2015] and do-
main transfer [Isola and others, 2017], whenever a
large scale training dataset is available [LeCun and
others, 2015]. Classical examples of classifiers are
email filtering to identify spam [Dada and others,
2019], handwriting recognition [Cireşan and others,
2010], or image segmentation for biomedical appli-
cations [Yang and others, 2017]. In the case of im-
age analysis, a breakthrough occurred in the early
2010s [LeCun and others, 2015] thanks to success-
ful Convolutional Neural Networks (CNN) that are
today widely used in image recognition or classifica-
tion. CNNs are especially good at recognizing image
features or spatial patterns due to convolution op-
erations, and their optimization is computationally
tractable owing to a strategy of shared weights to re-
duce the number of tuning parameters.

In glaciology, artificial neural networks have been
used for estimating bed topography [Clarke and oth-
ers, 2009, Monnier and Zhu, 2021, Leong and Horgan,
2020], to infer basal conditions at the bedrock [Riel
and others, 2021, Brinkerhoff and others, 2021], to
model mass balance [Bolibar and others, 2020], or to
identify the calving fronts of tidewater glaciers from
satellite images [Mohajerani and others, 2019, Zhang
and others, 2019, Baumhoer and others, 2019, Cheng
and others, 2020]. Note that the last three studies all
rely on semantic image segmentation using Convo-
lutional Neural Networks (CNN). Recently, Brinker-
hoff and others [2021] used a neural network to em-
ulate an expensive coupled ice flow / subglacial hy-
drology model, and infer the optimal parameters that
best reproduce the observed surface velocities using a
Bayesian approach.

In this paper, we apply deep learning to ice
flow modelling. Our approach consists of setting
up a CNN that predicts ice flow from given topo-
graphic variables and basal sliding parametrization
in a generic manner. By contrast, Brinkerhoff and
others [2021] emulated a coupled ice flow-hydrology
model for a specific glacier from a small-size ensem-
ble of relevant parameters. Our neural network em-

ulator is trained from a large dataset, which is gen-
erated from ice flow simulations obtained from two
state-of-the-art models – the Parallel Ice Sheet Model
[PISM, Khroulev and the PISM Authors, 2020] and
CfsFlow [Jouvet and others, 2008, 2009] – equipped
with two different mechanics (hybrid SIA+SSA and
Stokes) and at two different spatial resolutions (2 km
and 100 m). We integrate mass balance and mass
conservation with our ice flow emulator to obtain a
time evolution model, the “Instructed Glacier Model”
(IGM) written in Python, which permits highly effi-
cient, and mechanically state-of-the-art ice flow sim-
ulations.

In the following, we first describe the IGM model
with its neural network-based emulator and the gen-
eration of the training dataset. Then, we present our
results in terms of fidelity and computational perfor-
mance of the emulated ice flow model with respect to
the instructor model, and of embedding the ice flow
emulator into a time evolution model. Last, we com-
pare and discuss the IGM results with state-of-the-art
ice flow model results.

2 Methods

IGM couples the submodels of surface mass balance,
mass conservation, and ice dynamics as depicted in
Figure 1. Specifically, IGM models the ice flow by
a convolutional neural network emulator, which is
trained by PISM and CfsFlow realizations.

From now on, we denote b(x, y), h(x, y, t) and
s(x, y, t) = b(x, y) + h(x, y, t) bedrock elevation (as-
sumed to be fixed in time), ice thickness, and ice
surface elevation, respectively (Fig. 2). We call
ū = (ū, v̄) the vertically-averaged horizontal ice ve-
locity field, and SMB the Surface Mass Balance func-
tion, which consists of yearly-average accumulation
(when positive) or ablation (when negative). Given ū
and the SMB function, and ignoring basal melt, the
evolution in ice thickness h is determined by the mass
conservation equation:

∂h

∂t
+∇ · (ūh) = SMB, (1)

which states the balance between the change in ice
thickness ∂h

∂t , the dynamical thinning/thickening ∇ ·
(ūh) due to the ice flux ūh, and the adding/removal
of ice on the top surface by the SMB (Fig. 2). Here
∇· denotes the divergence operator with respect to
horizontal variables (x, y).

3



Surface mass
balance (SMB)

Climate
forcing

Ice thickness (h)
∂h
∂t +∇ · (ūh) = SMB
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Figure 1: Interactions between the model components and the input data of IGM.
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ū

s

x

z

h

b

Figure 2: Cross-section of a glacier with notations.

We assume the horizontal model domain to be a
rectangle subdivided by a regular 2D grid with uni-
form spacing ∆x in x and y — the variables h, s, b, ū,
v̄, SMB being defined at the center of each cell. Let
t0 be the initial time, {tk}k=0,1,... be a discretization
of time with variable steps ∆tk+1 = tk+1− tk. We de-
note by hk an approximation of h at time t = tk, and
similarly for all other variables. Given an initial ice
thickness h0, IGM updates the ice flow (ūk, v̄k), the
surface mass balance SMBk, and the ice thickness hk

sequentially as follows:

I) Ice flow : Given the ice thickness hk and the

surface slope fields (∂s
k

∂x ,
∂sk

∂y ), the ice flow emu-
lator provides the vertically-integrated ice flow
(ūk+1, v̄k+1).

II) Surface mass balance: Given the ice surface
elevation b+hk, the surface mass balance SMBk

is computed using two models: a simple one
based on given Equilibrium Line Altitude (ELA)
or a combined accumulation-Positive Degree-Day
(PDD) model [cf. Hock, 2003] based on climate
data (see Appendices B and C for further de-
tails).

III) Ice thickness: Given the vertically-averaged ice

flow (ūk+1, v̄k+1), and the surface mass balance
SMBk, update the ice thickness hk+1 by solv-
ing the mass conservation equation (1) using the
first-order explicit upwind finite-volume scheme
on a staggered grid [e.g., Lipscomb and oth-
ers, 2019], which has the advantage to be mass-
conserving. To ensure stability of the scheme, the
time step ∆t must satisfy the CFL condition:

∆t ≤ C × ∆x

‖ū‖L∞
, (2)

where C < 1 and ∆x is the grid cell spacing.
Condition (2) simply ensures that ice is never
transported over more than one cell distance in
one time step. Here, one uses CFL number C be-
tween 0.3 and 0.5. Further details about solving
of (1) is reported in Appendix A.

In the following, we focus on step I) as it is the key in-
novation of the paper; steps II) and III) are standard
modeling practices.

2.1 Ice flow emulator

Our ice flow emulator predicts vertically averaged
horizontal velocity from ice thickness, surface slope,
and basal sliding coefficient c, which is defined later
in Eq. (6):

M : {h, ∂s
∂x
,
∂s

∂y
, c} −→ {ū, v̄} (3)

RNX×NY ×4 −→ RNX×NY ×2

where input and output are two-dimensional fields,
which are defined over the discretized computational
domain (or subparts) of size NX ×NY .

We approximateM by means of an Artificial Neu-
ral Network (ANN) Mp (see Appendix E for a di-
gest on ANN and LeCun and others [2015] for an
in-depth review). ANNs map input to output vari-
ables using a sequence of network layers connected
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by trainable linear and non-linear operations with
weights p = [p1, . . . , pN ], which are adjusted (or
trained) to a dataset (realizations of an instructor
model in the present case). Here we use a Con-
volutional Neural Network [CNN; Long and others,
2015], which is a special type of ANN that addition-
ally includes local convolution operations to extract
translation-invariant features as trainable objects and
then learn spatially-variable relationships from given
fields of data [LeCun and others, 2015]. CNNs are
therefore suitable to learn from a high-order ice flow
model, which determines the velocity solution from
topographical variables and their spatial variations.
Note that in contrast to high-order models, the SIA
determines the ice flow from the local topography
without using further spatial variability information
in the vicinity.

Our CNN consists of Nlay two-dimensional convolu-
tional layers between the input and output data (Fig.
3). Passing from one to the next layer consists of a
sequence of linear and nonlinear operations:

� Convolutional operations multiply input matrix
with a trainable kernel matrix (or feature map)
of size Nker ×Nker to produce an output matrix
(Fig. 4). A padding is used to conserve the frame
size through the convolution operation. Convo-
lutional operations are repeated using a sliding
window with one stride across the input frame,
and for Nfeat the number of feature maps.

� As a nonlinear activation function, we use leaky
Rectified Linear Units [Maas and others, 2013],
which was found more robust than the standard
ReLU.

Only for the last convolutional layer, we instead use
a linear activation function. Various combinations of
(Nlay, Nfeat, Nker) are tested later on (Table 1), and
optimal parameter sets in terms of model fidelity to
computational performance are retained.

An advantage of CNNs is that the size of the in-
put/output may vary as our network consists of suc-
cessive convolution operations, which are inherent to
the window size. One can therefore train and evaluate
it with various sizes NX ×NY . The only requirement
is that for training, the window NX × NY must be
sufficiently large to carry the relevant information for
prediction. In this paper, we use NX = NY = 32.

Our CNN has N trainable weights p = [p1, . . . , pN ],
which increases with parametersNlay, Nfeat, andNker,

Input fields
(

h, ∂s∂x,
∂s
∂y , c

) Convolutional Neural Network Output fields

(ū, v̄)

Figure 3: The function we aim to emulate by learn-
ing from hybrid SIA+SSA or Stokes realizations maps
geometrical fields (thickness and surface slopes) and
basal sliding parametrization to ice flow fields.
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Figure 4: Illustration of one convolution operation
between two layers: the elements of the input matrix
and the kernel matrix are multiplied and summed to
construct the output entry. The operation is repeated
with a one stride sliding window to fill the output
layer. The frame size is conserved using a padding,
which consists of augmenting the input matrix by ze-
ros on the border (not shown).

and need to be adjusted to data. This stage—called
training—is performed by minimizing a loss (or cost)
function, which measures the misfit between the pre-
dicted ice flow, ūP , and the reference ice flow, ūR.
While there are several possible choices of loss (e.g.,
the mean squared error L2, the mean absolute error
L1, or more general Lp errors), we opted for the error
L1 loss function by simply imitating existing neural
networks [Thuerey and others, 2020, Kim and others,
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2019] designed for emulating CFD solutions:

‖ūP − ūR‖L1 =
1

|Ω|

∫
|ūP − ūR|1dΩ. (4)

The loss function is minimized on GPU using a mini-
batch gradient descent method, namely the Adam op-
timizer [Kingma and Ba, 2015] with a learning rate
of 0.0001, and a batch size of 64. Let us note that
we use a norm clipping to protect against gradient
vanishing or exploding behaviour. To reach a satis-
fying level of convergence, we usually iterate between
100 to 200 epochs, which means that the optimiza-
tion algorithm passes 100 to 200 times over the entire
dataset (Appendix D).

2.2 Data generation for training and vali-
dation

To train our ice flow emulator and assess its accu-
racy and performance, we perform an ensemble of
simulations to generate large datasets using two ice
flow models of variable complexity: the Parallel Ice
Sheet Model [PISM, Khroulev and the PISM Au-
thors, 2020], and CfsFlow [Jouvet and others, 2008].
The goal is to construct diverse states to obtain a
heterogeneous dataset that a large variety of pos-
sible glaciers (large/narrow, thin/thick, flat/steep,
long/small, fast/slow, straight/curved glaciers, . . . )
that can be met in future modelling. For simplicity,
we assume the ice to be always at the pressure melting
point to focus on the dynamics in this study.

PISM and CfsFlow simulate the evolution of the ice
thickness combining ice flow and mass balance mod-
els for given basal topography, initial conditions, and
climate forcing as depicted in Figure 1. In both mod-
els, the ice deformation is modelled by Glen’s flow law
[Glen, 1953]:

Ḋ = Aτn, (5)

where Ḋ is the strain rate tensor, τ is the deviatoric
stress tensor, A = 78 MPa−3 a−1 is the rate factor for
temperate ice [Cuffey and Paterson, 2010], and n is
Glen’s exponent, which is taken equal to 3. Basal slid-
ing is modelled with a non-linear sliding law—known
as Weertman’s law [Weertman, 1957]:

ub = cτ
1/m
b , (6)

where ub is the norm of the basal velocity, τb is the
magnitude of the basal shear stress, m = 1/3 is a
constant parameter and c is the sliding coefficient.

The main difference between CfsFlow PISM simula-
tions concerns the solving of the momentum balance.
While CfsFlow solves the full set of equations, PISM
uses a linear combination of the SIA for the vertical
shearing and the SSA for the longitudinal ice exten-
sion. This low-order hybrid approach is a trade-off
between mechanical accuracy and computational cost
that permits the model to run over long time scales
[e.g. glacial cycles Seguinot and others, 2018] – a task
not achievable with the more mechanically complete
CfsFlow.

We perform two types of simulations – icefield-scale
with PISM and individual glaciers with CfsFlow. In
both cases, the models are initialized with ice-free
conditions, and the mass balance is chosen to produce
a glacier advance followed by retreat to span over a
wide panel of glacier shapes:

� Icefields with PISM: We simulate the time
evolution of five synthetic icefields inspired by
the geometry of today’s Alaska icefields [Ziemen
and others, 2016]. As bedrock topography, we
take five 1024 km × 1024 km tiles of existing
mountainous range worldwide (Tab. 5 and Fig.
5). Basal sliding is modelled with law (6) with
fixed parameter c = 70 km MPa−3 a−1. For each
tile, we run PISM at 2 km resolution with a com-
bined accumulation-PDD model [cf. Hock, 2003]
and initialize it with present-day climate. Then
we gradually reduce air temperatures (up to 12 to
20◦C) for about 1000–2000 years to obtain suf-
ficiently large glaciers, and then warm it again
until all glaciers disappear. As a result, our five
simulations produce a large number of different
glacier shapes from very small individual glaciers
to large ice caps during time scales of 3 millen-
nia (Fig. 5). The dynamical and topographi-
cal results are recorded each 20 years, provid-
ing a representation of many states relevant for
training IGM. In total, they consist of about 5 ×
150 snapshots of grid size 512×512 of glaciated
mountain ranges. Further modelling details are
given in Appendix B.

� Valley glaciers with CfsFlow: We simulate
200 years time evolution of 41 glaciers that are ar-
tificially built on existing topographies. For that
purpose, we take valleys from the European Alps
and New Zealand, that are today ice-free but
were likely covered by ice during the last glacia-
tion. For each valley, we run CfsFlow at 100 m
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horizontal resolution and force equilibrium line
altitudes in a simple mass balance model to sim-
ulate a 100-year-long advance followed by a 100-
year-long retreat. The results are recorded ev-
ery 2 years to provide a wide range of dynamical
states roughly representative of real world tem-
perate glacier behaviour since the Little Ice Age,
consisting of about 41 × 100 snapshots. Then,
for a chosen subset of 10 glaciers (Fig. 6 and
Section “Data selection”) among the 41 glaciers,
we carry the same simulation varying parameter
c in {0, 6, 12, 25, 70} km MPa−3 a−1 to explore
different basal sliding conditions. We addition-
ally carry out two further simulations of existing
glaciers – Aletsch and Rhone glaciers (Switzer-
land) – for 250 and 200 years, respectively, that
we use for assessing the method accuracy. Fur-
ther modelling details are given in Appendix C.

In all simulations, the fields of ice thickness, ice
surface, sliding coefficient, and depth-average veloc-
ity, covering various domains are recorded on a struc-
tured grid at different times. The transformation of
raw modelling data to be usable for training our neu-
ral network emulator (Eq. (3)) consists of the follow-
ing three steps (the two last are illustrated in Figure
7):

� First, the data are normalized to fit the interval [-
1,1] by dividing by a typical value over the entire
dataset for each variable independently. Such a
normalization is widespread in deep learning to
deal with different ranges of data and homogenize
their values prior learning [Raschka and Mirjalili,
2017].

� Second, patches of dimension NX ×NY are ran-
domly extracted from all slices of the dataset.
The motivation to work patch-wise instead of the
entire domain is that i) ice flow at a given loca-
tion is only determined by predictors within a
certain neighbourhood, it is therefore unneces-
sary to carry irrelevant distant information for
model prediction, ii) it gives higher flexibility
to exclude ice-free patches, which do not carry
any relevant information for training, iii) to ap-
ply data augmentation (see next item). Here we
found that a NX ×NY = 32× 32 patch size was
suitable for all applications, and we therefore al-
ways used this value.

� Last, data augmentation [Raschka and Mirjalili,
2017] is applied after patching. For that purpose,
we randomly apply 90◦, 180◦, 270◦ rotations, as
well as vertical and horizontal flipping to the
patches shortly after being picked in the dataset.
This augmentation increases the amount of data
and permits to regularize the underlying optimiz-
ing problem, and is supported by the fact that
the process we wish to capture – the ice flow – is
invariant to these transformations.

2.3 Data selection

To reduce redundant data generated by CfsFlow and
explore a variety of sliding parameters c, we have ap-
plied a strategy to select a pool of glaciers that are the
most relevant for training (Figs. 8 and 6). For that
purpose, we first consider the 41 glacier simulations
obtained with a constant sliding parameter c = 0. We
sort the 41 glaciers by ice volume from the most to
the least voluminous one at its maximum state. The
selection worked as follows: We train the emulator on
the first glacier and use the second one for testing. If
the test loss is greater than the training loss, it means
this data has some added value and we include it to
the training pool, otherwise we exclude it. Then we
apply the same strategy to the third and loop over the
entire set of all available glacier runs. This iterative
selection proved to be efficient to minimize the size
of data while keeping it heterogeneous (Fig. 8), and
to be relatively insensitive to the choice of c = 0 (not
shown). As a result, only 10 glaciers are kept from
the 41 original ones (Fig. 8), allowing further simu-
lations to be carried out with varying parameters c.
Note that this is mostly the largest / thickest glaciers
(or the leftmost in Fig. 8) that were kept as they nat-
urally carry more information. Indeed, a small glacier
is similar to a large glacier in an early state of advance
or a late state of retreat, explaining why it naturally
brings little added value to the data set, and justify-
ing our choice of starting from the most voluminous
glaciers.

2.4 Implementation

IGM is implemented in Python with the Tensor-
flow [Abadi and others, 2015] library to evaluate the
neural network emulator, solve the mass balance and
the mass conservation equation (1) in parallel on CPU
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Figure 5: Topographies of the fives 1024 km × 1024 km selected tiles of mountain ranges (upper panel) used
to produce icefield simulations with PISM and simulated maximal state (bottom panel).

Figure 6: The 10 selected glaciers used for individual glacier simulations with CfsFlow at 100 m resolution used
to train IGM’s ice flow emulator with various sliding coefficients c. The horizontal bar represents 5 km to give
the scale of each glacier.

or GPU. The training of the neural network emu-
lator was performed separately on GPU using the
Keras library [Chollet and others, 2015] with a Ten-
sorflow backend. The Python code as well as some
ice flow emulators are publicly available at https:

//github.com/jouvetg/igm.

3 Results

In this section, we demonstrate that our trained neu-
ral network can generate ice flow solutions with high
fidelity and at cheaper computational cost compared
to instructors. We then show the same features pre-
vail with the time evolution model (referred as “In-
structed Glacier Model” or IGM) that combines the
trained neural network as ice flow model emulator and
mass conservation.
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and normalization

Training dataPISM or CfsFlow input and output data

Figure 7: Illustration of data preparation steps to
train IGM including patch extraction and data aug-
mentation.

Figure 8: Evolution of the training and
test/validation losses during the iterative selec-
tion procedure. Only glaciers with greater validation
than training loss were kept in the pool (large dots).
The maximum ice thickness of the 10 selected glaciers
is depicted on Fig. 6.

3.1 Ice flow field

We conducted several experiments with various net-
work parameters to seek for the optimal parameters
in terms of model accuracy versus model evaluation
costs. For that purpose, we split our dataset in two
parts: one for training and one for validation. Ap-
pendix D shows the evolution of training and vali-
dation losses with respect to epochs. Unless speci-
fied differently, we always reserved Icefield A (resp.
Aletsch and Rhone glacier with c = 12) for vali-
dation and take the others for training for icefield
(resp. glacier) simulations. Note that the validation
loss is always lower than the training loss demonstrat-
ing that our choice of validation data remains safely

within the hull of the training dataset (Appendix D).

3.1.1 Fidelity

The fidelity is measured by taking the rescaled L1

validation loss (Eq. (4)) between the predicted ice
flow field ūP and the reference one ūR, as well as the
L1 relative error (taken only where the L1 norm of
the ice velocity is above 10 m a−1):

‖ūP − ūR‖L1,rel =
1

|Ω|

∫

|ūR|1>10

|ūP − ūR|1
|ūR|1

dΩ. (7)

Table 1 displays the fidelity results of the trained
ice flow emulator to reproduce the ice flow of Icefield
A performed with PISM and of Aletsch glacier (with
fixed sliding parameter c = 12) performed with Cfs-
Flow varying network parameters such as the number
of layers Nlay, output filters Nfeat or kernel size Nker.
It shows that increasing the number of filters Nfeat im-
proves the fidelity of the solution. This is also true for
the number of layers, however, only up to Nlay = 16
layers as the fidelity deteriorates when deepening the
network. Last, increasing the kernel size Nker from 3
(the most common value, see Fig. 4) does not improve
the solution in all cases. Opting for large Nlay, Nker

and Nfeat numbers increases the number of network
parameters, and thus the computational cost. There-
fore, we selected two optimal parameter sets (one for
each kind of dataset) that lead to fidelity levels above
90% while keeping low evaluation costs: i) the pa-
rameter set (Nfeat, Nker, Nlay) = (32, 3, 8) for PISM
icefield data leads to a neural network that has about
65 k trainable parameters (it stores into a 880 KB
file), and ii) the parameter set (Nfeat, Nker, Nlay) =
(32, 3, 16) for CfsFlow glacier data leads to a neural
network that has about 140 k trainable parameters
(it stores into a 2 MB file).

Figures 9 and 10 compare the flow speeds of Ice-
field A and Aletsch glacier at the maximum ice ex-
tent to the reference simulations with the respective
selected models. The fidelity of the emulated solution,
compared to the reference PISM or CfsFlow solutions
(which were not used in the training stage), is high
and of the same order in all cases with mean rela-
tive errors below 9% (Tab. 1). This shows the neural
network’s ability to learn from data from different to-
pographies and to apply this knowledge to new ones,
even with a relative small model size (65 k and 140 k
of trainable parameters, respectively).
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Icefields / PISM Glaciers / CfsFlow

Neural network parameters Fidelity Performance Fidelity Performance

# trainable Nfeat Nker Nlay L1 valid. loss GPU CPU L1 valid. loss GPU CPU
weights N (m a−1 (%)) (sec) (sec) (m a−1 (%)) (sec) (sec)

9’000 8 3 16 5.4 (17) 0.033 0.094 7.6 (19) 0.006 0.014
35’000 16 3 16 3.3 (12) 0.039 0.142 4.5 (11) 0.007 0.018
140’000 32 3 16 2.6 (8) 0.055 0.366 3.2 (8) 0.008 0.030
556’000 64 3 16 2.4 (7) 0.105 1.082 2.7 (7) 0.012 0.090

140’000 32 3 16 2.6 (8) 0.055 0.366 3.2 (8) 0.008 0.0306
386’000 32 5 16 3.1 (9) 0.139 0.803 3.0 (8) 0.017 0.072

28’000 32 3 4 3.3 (12) 0.030 0.086 8.4 (20) 0.005 0.010
65’000 32 3 8 2.7 (9) 0.038 0.176 4.9 (12) 0.007 0.016
140’000 32 3 16 2.6 (8) 0.055 0.366 3.2 (8) 0.008 0.030
288’000 32 3 32 2.8 (9) 0.089 0.713 3.4 (8) 0.012 0.058

Table 1: Fidelity and performance results of our neural network trained from the icefield (PISM) and glacier
(CfsFlow) simulations for different network parameters. The L1 validation loss (m a−1) is the mean absolute
discrepancy between the neural network and the reference velocity solutions. For convenience, we also provide
the L1 misfit relative (in %) defined by Eq. (7). Selected (optimal) models used in the remainder of the paper
are marked with bold numbers. The performance consists of the average time to compute an entire ice flow
field using GPU (NVIDIA Quadro P3200 GPU card with 1792 1.3 GHz cores) and CPU (Intel(R) Core(TM)
i7-8850H CPU with 6 2.6 GHz cores).

Figure 9: Vertically-averaged ice flow magnitude of Icefield A at its maximum state: PISM reference solution
(A), IGM solution trained without (B) and with (C) the solution, and the difference between IGM and PISM
solutions (D and E).

A closer look at the emulated ice flow field of
Aletsch glacier (Fig. 10) shows that the ice flow is
well reproduced for the three accumulation basins,
however, larger discrepancies occur on the tongue and
at Konkordiaplatz where the three tributary basins
merge into a single tongue. While the training dataset
generated by CfsFlow contains many examples of sin-

gle channelized flow (Fig. 6), merging ice flows of sim-
ilar sizes such as at Konkordiaplatz as well as thick
ice (up to 800 m) is much less common in the train-
ing dataset, explaining why the flow in this region
is less well reproduced than anywhere else. By con-
trast, single-branch and thinner valley glaciers such
as Rhone Glacier are much more common and better
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Figure 10: Vertically-averaged ice flow magnitude of the Aletsch glacier at its maximum state: CfsFlow reference
solution (A), the IGM solution trained without (B) and with (C) the solution, and the difference between IGM
and CfsFlow solutions (D and E).

represented in the training dataset. As a result (Fig.
11) the emulated ice flow is in better agreement with
the reference CfsFlow one.

Figure 11: Vertically-averaged ice flow magnitude of
the Rhone glacier at its maximum state: CfsFlow ref-
erence solution (A), IGM/test solutions (B), and the
difference between IGM and CfsFlow solutions (C).

The L1 error (or loss) between a predicted and a ref-
erence ice flow has two components, a “network” com-
ponent that measures the performance of the network
to compress and recover solutions and a “data” com-
ponent that measures the error related to the abun-
dance/lack of relevant training data. These two com-
ponents can be distinguished by including the solution
we wish to predict to the training dataset to measure
the sole “network” component (or compression error).
Here we found that this error component is ∼ 7% in
both cases, which is ∼ 1−2% less than the L1 original
validation loss (∼ 8−9%). We therefore attribute the

7% to network errors and the remainder (∼ 1−2%) to
a lack of representative data. The reference solution,
and the predicted solutions with or without the refer-
ence in the training are displayed in Figures 9 and 10.
In the case of Aletsch glacier, the spatial error pat-
terns show that including the reference solution in the
training locally resolves the discrepancy at the con-
vergence area (Konkordiaplatz) of the three ice flow
branches (Fig. 10), confirming that this particular
source of error mostly lies on the data side (i.e. the
absence of analogues in the training dataset) unlike
the remaining errors on the main glacier trunk.

Up to now, we have tested the learning of ice flow
from different geometries, but leaving the sliding co-
efficient c unchanged (c = 12 km MPa−3 a−1). Tab.
2 gives the L1 validation loss (m a−1) at the maxi-
mum extent of Rhone and Aletsch glacier simulations
with different sliding coefficients c, including the val-
ues used for training {0, 6, 12, 25}, as well as interme-
diate values {3, 9, 18} to assess the interpolation accu-
racy. As a result, the values used for training yields
to similar fidelity levels (< 9%) while intermediate
values yields to slightly deteriorated levels (< 13%).

3.1.2 Computational performance

Along with the fidelity results, Table 1 also displays
the time needed to evaluate a single full ice flow field
(after training) with the neural network and vary-
ing parameters using both computational resources
of the same laptop (Thinkpad Lenovo P52): a GPU
(NVIDIA Quadro P3200 GPU card with 1792 1.3
GHz cores) or a CPU (Intel(R) Core(TM) i7-8850H
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Sliding coeff. c Rhone Glacier Aletsch Glacier
km MPa−3 a−1 m a−1 (%) m a−1 (%)

0 2.3 ( 9 ) 3.7 ( 10 )
3 3.1 ( 13 ) 3.8 ( 12 )
6 2.3 ( 7 ) 3.0 ( 8 )
9 2.7 ( 7 ) 3.3 ( 8 )

12 2.8 ( 8 ) 3.6 ( 8 )
18 4.8 ( 12 ) 5.0 ( 12 )
25 4.4 ( 9 ) 5.0 ( 9 )

Table 2: L1 validation loss (m a−1) and relative misfit
(in %) defined by Eq. (7) for Rhone and Aletsch
glaciers with different sliding coefficients h including
values that have been used for training (in bold), as
well as intermediate values.

CPU with 6 2.6 GHz cores). For convenience, all CPU
and GPU performance results given in this paper re-
late to this hardware. As a result, GPU and CPU
show dramatically different performances. GPU al-
ways outperforms CPU (speed-ups between 2 and 8),
however, the increasing computational cost coming
from the model size and the domain resolution (larger
for icefield than for glaciers) scales differently between
GPU and CPU. While GPU and CPU have close per-
formance for models with few trainable parameters
and small domains, the GPU is especially advanta-
geous for complex models (with many weights) and
for large size domains.

While a key advantage of neural networks is their
low evaluation cost, their training necessarily comes
with substantial upstream computation costs, which
must be invested for each set of ice flow settings. Ta-
ble 3 lists these upstream costs for generating the data
from traditional models and training the model itself.
As a result, the generation of the full dataset was
the most computationally expensive task: about 7 to
26 days for icefield simulations with PISM and glacier
simulations with CfsFlow on CPU, respectively, while
the training of the optimal models took 8 to 24 hours
on GPU.

3.2 Icefield and glacier evolutions

We now assess the fidelity and performance of the
time-evolution model (Fig. 1) by replicating Icefield
A, Aletsch and Rhone glacier transient simulations
with IGM. It must be stressed that none of original
Icefield A, Aletsch and Rhone glacier simulations were

Simulation Data (CPU) Emulator (GPU)
generation training

Icefield ∼ 150 h ∼ 8 h

Glacier ∼ 625 h ∼ 24 h

Table 3: Computational costs required for the gener-
ation of all datasets on the CPU and for the training
of the emulator on the GPU.

used for training IGM.

3.2.1 Fidelity

Overall, IGM shows good skill at reproducing ice
thickness of Icefield A (Figure 12), and Aletsch and
Rhone glaciers at maximum ice extent (Fig. 13). The
time-integrated root-mean-square error in terms of ice
thickness is ≈20 m in all cases. IGM also reproduces
the evolution of ice volume, ice extent, and mean ice
flow speed with high fidelity (Fig. 14) although small
discrepancies arise, e.g. the ice flow of Aletsch Glacier
is slightly overestimated with IGM. In the latter case,
the cumulative errors remain very limited despite sys-
tematic errors in the ice flow (e.g., at the convergence
area of the three ice flow branches, Fig. 10).

3.2.2 Computational performance

Table 4 compares the computational times required
for Icefield A and Aletsch glacier simulations with all
models on CPU and GPU. Note that a direct com-
parison is only possible on CPU as none of PISM or
CfsFlow runs on GPU. Additionally, we forced IGM
to use a single core for comparison with CfsFlow as
the latter only runs in serial. It must be stressed
that the given speed-up does not include the training
costs (data generation and training itself summarized
in Table 3).

Table 4 shows that IGM outperforms PISM for the
Icefield A simulation by a factor of ∼20 on CPU,
with an additional ∼10x speed-up on GPU. Here, the
high resolution of the icefield computational domain
(512×512) takes full advantage of the parallelism and
explains the superiority of the GPU over the CPU.
Note that while most of the time is taken by the ice
flow model in glacier simulations, the PDD mass bal-
ance model (Appendix B) in the icefield simulation
requires significant aside computational effort (even
on the GPU) as it loops over each grid cell at short
time-scale intervals.
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Figure 12: Maximum ice thickness of Icefield A modelled with PISM (A) and IGM (B), and the difference
between the two (C).

Figure 13: Ice thickness fields of Rhone (top panels)
and Aletsch (bottom panels) glaciers after 110 and
120 years with CfsFlow (A) and IGM (B), as well as
the difference between the two (C).

On the other hand, IGM outperforms CfsFlow for
the simulation of Aletsch Glacier by a factor of ∼600
on CPU (using a single core), with an additional
∼10x speed-up on GPU, but only ∼2x when com-
paring to a 6 core CPU run (not shown). Here, the
GPU remains superior due to the large size of the
Stokes ice flow neural network as noted before, how-

ever, the added value is less important than before as
the size of the computational domain is much lower
(185×121). As an additional benchmark in Table 4,
we have compared the computational time to simulate
the full retreat of Aletsch glacier for 150 years from
today’s state with another Stokes model – Elmer/Ice
[Gagliardini and others, 2013] – and IGM, which was
trained from Elmer/Ice simulations. As a result, we
found a ∼1000x speed-up when comparing IGM and
Elmer/Ice runs on CPU (both using all 6 cores), with
an additional speed-up of ∼2x on GPU.

4 Discussion

In ice flow modelling, the choice of a stress balance
model is often the result of a compromise between
mechanical complexity, spatial resolution, and com-
putational affordability. Shallow models rely on sim-
plifications to make them computationally tractable
but at the expense of mechanical loss of accuracy [e.g.
Greve and Blatter, 2009]. In contrast, the Stokes
model is computationally expensive, and it is there-
fore challenging to use it for large domains and long
time scales. The transfer of these models directly to
GPUs offers promising speed-ups [Räss and others,
2020], however this usually requires a full reimplemen-
tation of the numerical model. As an added value to
traditional modelling, our results demonstrate that
substituting a well-trained neural network emulator
running on GPUs for a traditional hybrid or Stokes
solver permits to speed up by several orders of mag-
nitude if one excludes a minor loss in accuracy and
training costs, which are invested a single time for a
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Figure 14: Modelled evolution of ice volume, glaciated area and mean velocity field for Icefield A (A) and
Aletsch glacier (B) simulations performed with IGM, PISM, and CfsFlow.

given ice flow setting.

4.1 Network compression capability

We find that a relatively simple convolutional neu-
ral network composed of tens of layers is capable of
learning from realizations of two ice flow models of
different complexity levels and of retrieving compos-
ite solutions with high and similar fidelity (above 90
%) with respect to the instructor models. The model
size in terms of trainable parameters (105-106) – or
equivalently in terms of data storage (1 − 2 MB) –
is very small compared to the amount of data that
was used for training (above 1 GB). The misfit be-
tween emulated and reference solutions due to the
neural network itself (i.e., the compressibility error)
is close to 7-8% for the emulation of both CfsFlow
and PISM. This is likely much smaller than data and
model uncertainties for many glaciological applica-
tions. By contrast, the error related to the richness of
the dataset to include a large diversity of relevant dy-
namical states is fairly small (< 2%). This therefore
demonstrates the ability to learn the relationship be-
tween topographic and ice flow variables in a generic
manner, i.e., to translate the knowledge acquired on
some glaciers to others. Most importantly, a model as

complex as the 3D Stokes equations can be learnt and
emulated very efficiently by a neural network, which
maps 2D fields.

Because using standard network parameters al-
ready results in a high fidelity emulator, we have not
explored further parameter choices, thus leaving room
for future improvements. For instance, we used the
L1 norm as our loss function, which is a common
choice in deep learning accelerating CFD [Thuerey
and others, 2020, Kim and others, 2019], future stud-
ies could explore other loss/misfit functions such as
L2, Lp,. . . or other gradient-based norms such as W 1,p

with p = 1 + 1
n , which is the natural norm in which

to analyse the existence and uniqueness of solutions
of the Stokes problem in its variational (or minimiza-
tion) form [Jouvet and Rappaz, 2011].

4.2 Optimality of the dataset

We have found that our original dataset made of ar-
bitrarily chosen glacier/valley topographies to train
IGM was far from optimal (e.g., containing redun-
dant data). Criteria for the optimality of the dataset
(in terms of model fidelity to data size) were investi-
gated. First, we attempted (not shown) to use princi-
pal component analysis to preprocess and reduce the
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Icefield A simulation (3’500 years)

Model CPU GPU
# cores 6 1792

PISM (all) 36’200 s −
IGM (all) 1’522 s 185 s
− Ice Flow component 77% 58%
− Mass Balance component 21% 37%

Aletsch glacier simulation (200 years)

Model CPU GPU
# cores 1 1792

CfsFlow (all) 49’860 s −
IGM (all) 90 s 8 s
− Ice Flow 98% 85%

Additional Aletsch glacier retreat run (150 years)

Model CPU GPU
# cores 6 1792

Elmer/Ice (all) 12’600 s −
IGM (all) 13 s 5 s
− Ice Flow component 95% 80%

Table 4: Overall computational time to achieve the
simulation of Icefield A with PISM and IGM using
CPU and GPU at 2 km resolution (top Table) and of
Aletsch glacier with CfsFlow and IGM using CPU and
GPU (middle Table). The bottom panel compares
the computational times to simulate the retreat of
Aletsch glacier for 150 years from today’s state with
another Stokes model Elmer/Ice and IGM, which was
trained from Elmer/Ice simulations. The proportion
of this time taken by the ice flow and mass balance
model components is additionally given when they are
significant.

dimensionality of data while preserving the original
structure and relevant relationships [e.g. Brinkerhoff
and others, 2021]. However, our iterative selection
scheme was found to be more efficient to filter nonrel-
evant data: the glacier dataset was reduced by about
75% without affecting the emulator accuracy.

4.3 Varying basal sliding conditions

Real-world glacier modelling requires the tuning of
ice flow parameters to observational data. For that
purpose, our Stokes emulator can take the basal slid-
ing coefficient as input thanks to an exploration of

this parameter in the training dataset. Our results
have shown that the interpolation errors between the
training states remain fairly low (Tab. 2). Note that
while we used spatially constant sliding coefficients
for training, our emulator can take a spatially variable
sliding coefficient (e.g., resulting from surface data as-
similation) as input field. In such a case, it would be
desirable to assess the emulator accuracy against ref-
erence solutions based on spatially sliding coefficients
to evaluate whether the training data should be aug-
mented with such solutions.

4.4 Embedding into the time evolution
model

While even a small < 10% inaccuracy of the ice flow
emulator could raise concerns of cumulative errors in
the time evolution model due to the feedback between
ice flow and elevation-dependent mass balance, the
good match between time evolution variables (Figs.
12–14) suggests instead that the errors compensate.
Additional investigations have shown that the errors
of the divergence of the ice flux (not shown), which
matters in the time-advancing scheme, are much more
unevenly distributed than ice flow errors, leading to
probable error compensation. This suggests that em-
bedding our neural network emulator iteratively into
the mass conservation equation is a safe operation,
which keeps a high level of fidelity.

4.5 Speed-ups

The significant speed-up obtained here is the com-
bined result of two key ingredients: i) neural networks
(once trained) are very cheap compared to the direct
solving of nonlinear diffusion equations describing the
ice flow ii) the evaluation of such a neural network, as
well as other expensive IGM model component tasks
(like the PDD mass balance) runs well in parallel and
can therefore take advantage of GPUs. Our perfor-
mance results demonstrated that i) a direct speed-up
of ≈ 20 and 600 to 1000 for hybrid and Stokes me-
chanics on our examples related to CPUs, ii) GPU
can give another substantial speed-up, which is harder
to quantify as it depends on modelling features and
GPU performance. Indeed, GPUs outperform CPUs
in general for large computations when all GPU cores
available are used. Here, GPUs will show great ad-
vantage when the neural network size is large (such as
the one selected to emulate Stokes) or/and when the
size of the modelled domain is high. We can therefore
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anticipate a great added value of GPU for emulating
Stokes and/or large size computations (e.g., the mod-
elling of large ice sheets in high resolution). Finally,
we used here a single laptop integrated GPU card
(NVIDIA Quadro P3200 GPU), which features mod-
erate performance (less than 2000 1.3 GHz cores and
6 GB of memory). There is therefore room for further
speed-up by switching to the latest available GPUs,
considering that the price performance of GPUs cur-
rently doubles roughly every two years.

4.6 Advantages and limitations of IGM

Besides the computational efficiency to obtain the ice
flow solution at near Stokes accuracy, IGM has a cer-
tain number of practical advantages:

� Although it can be trained on three-dimensional
ice flow models, IGM deals with 2D regular grids
facilitating the management of input and output
data.

� IGM only takes gridded bedrock and surface el-
evations as topographic inputs, and does not re-
quire to identify any catchment or center flow
line, in contrast to flowline-based models.

� IGM users can directly do simulations by pick-
ing already trained model emulators (which vary
according to spatial resolution) from a model col-
lection library that comes along IGM’s code.

� Although IGM performs better on GPU, it runs
across both CPU and GPU, and switching from
one to another architecture is trivial.

On the other hand, IGM has the following limita-
tions, which call for further development:

� One must keep in mind that the applicability of
IGM is dictated by the dataset used for training
the emulator. For instance, the CfsFlow-trained
emulator presented here will not be able to model
the ice flow of glaciers, whose dimensions exceed
the hull defined by the set of training glaciers
(Fig. 6).

� The current emulator assumes isothermal ice for
simplicity, i.e., it ignores the effect of ice temper-
ature on ice deformation and basal sliding.

� In our approach, we have natural inflow and out-
flow conditions at the border of the computa-
tional domain, and no specific other boundary
conditions can be prescribed.

� IGM’s ice flow emulator works only with regular
gridded data, and using unstructured meshes is
incompatible with this strategy.

5 Perspectives

5.1 Potential for applications

The computational efficiency of IGM opens perspec-
tives in paleo ice flow modelling, which involves very
long time scales and relatively high resolution com-
putational domains such as: i) the simulation of
large icefields for multi-glacial cycles for reconstruc-
tion purposes [Seguinot and others, 2018] or to study
glacial erosion and landscape evolution [Egholm and
others, 2017] – an application that requires high-order
mechanics to capture basal sliding, ii) the inference
of paleo climatic patterns from geomorphological ev-
idence using an inverse modelling [Vǐsnjević and oth-
ers, 2020].

The ability of IGM to learn ice mechanics from an
ensemble of glaciers simulated with a state-of-the-art
physical instructor model and translate knowledge ac-
quired from some glaciers may also be exploited in
global modelling. Indeed, today’s global models all
rely on highly simplified SIA-based models contribut-
ing to model uncertainties. Providing a training set
over a representative sample of glaciers with a range
of ice flow parameters, IGM would permit to model a
massive number of glaciers with a near Stokes accu-
racy.

5.2 Generalizing the emulator

It is straightforward to generalize our CNN (Fig. 3)
with further relevant spatially variable inputs (e.g.,
ice hardness) to emulate a more generic ice flow
model. In the same way, adding information on buoy-
ancy as input would permit to learn from an ice shelf
dynamical model, and then generalize the emulator
to floating ice. Instead, the main challenge here is to
provide a larger ensemble of training data.

5.3 Data assimilation

While the current paper focused on emulating a cheap
ice flow emulator from a mechanical model, it does
not overcome the necessary step of calibrating ice flow
parameters to observational data. Besides their low
computational evaluation costs, neural networks rely
on automatic differentiation, which is a strong asset
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for inverse modelling. The optimization of basal con-
ditions (bedrock location and basal sliding) from sur-
face observations through the inversion of an ice flow
emulator such as the one we used should be investi-
gated.

In contrast, training a network similar to ours with
real observations is a tempting alternative to directly
include data assimilation. However, this strategy
comes with a number of challenges that should be
tackled, including i) the availability of abundant ob-
servational data necessary for training a deep network
(especially for the ice thickness) ii) the embedding of
possibly contradictory observational data (explaining
real ice flow requires more than ice thicknesses and
surface slopes, i.e. basal data which are hard to ob-
serve), and iii) the effect of the data noise due to
contradictory observational data on the iterative time
evolution scheme. Future research is therefore needed
to explore this potential.

6 Conclusions

We have introduced a new type of glacier model,
which computes the ice flow using a deep learning
emulator trained from hybrid SIA+SSA or Stokes me-
chanical models. Our strategy permits us to compress
the dynamical states produced by these models and
to use this information to substitute the expensive ice
flow model by a cheap emulator and therefore speed
up the overall time evolution model considerably. We
have demonstrated that the resulting model IGM, af-
ter appropriate training, models the flow and evolu-
tion of large icefields over millennia and of individual
mountain glaciers over centuries up to 20 and 1000
faster than traditional hybrid and Stokes on CPUs
with fidelity levels above 90%, and up to 200 and 2000
faster by switching to GPUs. IGM has potential for
application in global glacier modelling as well as in
paleo and modern ice sheet simulations. The IGM
code and the trained ice flow emulators are publicly
available at https://github.com/jouvetg/igm.
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A Appendix A: Solving mass con-
servation

The mass conservation equation (1) is solved using a
first-order upwind finite-volume scheme similar as the
one described in Lipscomb and others [2019]. Here we
use a staggered grid, i.e., the ice thickness is defined
at the center of each grid cell, but the ice flow ve-
locities used in the scheme are defined at the middle
of the grid edges by a simple averaging. The key
advantage of using such a staggered grid is that solv-
ing equation (1) by finite volumes becomes natural as
mass of ice is allowed to move from cell to cell (where
the thickness is defined) from edge-defined fluxes (in-
ferred from depth-average velocities). The transport
of mass is governed following an upwind scheme for
stability reasons. The resulting scheme is fully ex-
plicit (and therefore runs well in parallel), however,
subject to CFL condition (2). Further details about
this scheme can be found in [Section 5.5.3 Lipscomb
and others, 2019].

B Appendix B: Icefield simula-
tions with PISM

To generate icefield simulation data, we selected five
1024 km × 1024 km tiles of existing topographically
diverse mountainous environments worldwide (Tab. 5
and Fig. 5). For each tile, we extracted the publicly
available NASA Shuttle Radar Topographic Mission
(SRTM, http://srtm.csi.cgiar.org/) Digital Ele-
vation Model (DEM), resampled at 2 km resolution to
be used as basal topography in PISM. Details about
the ice flow and mass balance models used in PISM
are now described in turn:

� Basal sliding was modelled with law (6) with pa-
rameter c = 70 km MPa−3 a−1, which was chosen
so that a basal shear stress of 80 kPa corresponds
to a sliding velocity of about 35 m a−1 [Pattyn
and others, 2012].

� Surface mass balance (difference between accu-
mulation and ablation) is calculated from the
monthly mean surface air temperature, monthly
precipitation and daily variability of surface air
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temperature. Accumulation is equal to solid pre-
cipitation when the temperature is below 0◦C,
and decreases to zero linearly between 0◦C and
2◦C. Ablation is computed proportionally to the
number of positive degree days [Hock, 2003] with
factors fi = 8 mm K−1 day−1 w.e. for ice and
fs = 3 mm K−1 day−1 w.e. for snow, which are
taken from the EISMINT intercomparison exper-
iments for Greenland [MacAyeal, 1997].

Icefield Lon. Lat. Geo. location

A -72.6 -14.70 Andes
B -117.5 51.0 Canada
C 44.0 42.0 Caucasus
D -75.0 5.0 Colombia
E 38.0 10.0 Ethiopia

Table 5: List of tiles used to generate icefields simu-
lations with PISM at 2 km resolution. The longitude
and the latitude correspond to the location of the cen-
ter of each squared tiles.

As today’s climate forcing, we took the monthly
temperature and precipitation from the WorldClim
dataset [Fick and Hijmans, 2017]. Starting from ice-
free conditions, we linearly decreased temperature at
a rate of 1◦C per century until a large icefield covering
the tile was built. Then, the cooling was reversed
symmetrically into warming at the same rate until
the ice has completely disappeared.

C Appendix C: Glacier simula-
tions with CfsFlow

To generate glacier simulation data, we have picked
41 diverse existing valleys from the European Alps
and from New Zealand with drainage basins rang-
ing from 80 to 700 km2. For each one, we
have extracted the publicly available NASA Shuttle
Radar Topographic Mission (SRTM, http://srtm.

csi.cgiar.org/) Digital Elevation Model (DEM) to
be used as bedrock, and built a 100-m resolution two-
dimensional structured mesh of the DEM. A three-
dimensional mesh was then vertically extruded with
100 of 10-meters thick layers. In more detail, we use
CfsFlow with the following specific settings:

� Basal sliding was modelled by (6) with constant
coefficient c taken among {0, 6, 12, 25, 70} km
MPa−3 a−1.

� As mass balance, we use a simple parametriza-
tion based on given Equilibrium Line Altitude
(ELA) zELA, accumulation βacc and ablation βabl
vertical gradients, and maximum accumulation
rates amax:

SMB(z) =
{

min(βacc(z − zELA), amax), if z ≥ zELA

βabl(z − zELA), otherwise.

with βabl = 0.009 a−1, βacc = 0.005 a−1, and
amax = 2 m a−1.

We initialized the model with ice-free conditions. For
the first 100 years, the ELA was chosen constant with
the 20% quantile value of the original glacier top sur-
face elevation to allow for glacier advance. For the
next and last 100 years, the ELA was raised linearly
until it reached the 90% quantile value of the origi-
nal glacier top surface elevation to allow for glacier
retreat.

D Appendix D: Learning curve

Figure 15 shows the learning curve, i.e., the evolu-
tion L1 loss/misfit function against the number of
epochs (an epoch corresponds to one pass over the en-
tire training dataset), during the training of the two
datasets. As a result, the convergence of the train-
ing was always found efficient and fairly smooth. The
validation loss was always found below the training
loss.

E Appendix E: Digest of artificial
neural networks

Artificial neural networks approximate a mathemat-
ical function that maps input to output variables
through a sequence of layers that contain nodes (or
neurons). Mathematically, the output of each neuron
is computed by some nonlinear function (called acti-
vation) as the sum of its inputs. Neurons and connec-
tions have weights that are adjusted during the train-
ing (i.e., learning) stage. The optimal weights of the
network are found by minimizing a certain cost func-
tion (often referred as loss function), which is most
often defined as the misfit between the ground truth
of the training data and the output of the network.
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Figure 15: Evolution of the train and the validation
loss while training the ice flow emulator from the data
generated with PISM (top) and CfsFlow (bottom).

As the number of weights of an effective neural net-
work can be very high (typical 106 − 108), the avail-
ability of a large data set is the key to determine
the optimal weights and prevent against underdeter-
mined systems. The optimization (or training) of the
neural network often relies on a batch gradient de-
scent method, which consists of sequentially adjust-
ing weights by computing descent directions on small
subsets (called batches) of the training data from the
error between the model and data outputs. While the
model evaluation happens sequentially from the first
to the last layer (feed forward), the training happens
sequentially in the opposite direction (back propaga-
tion) from the error computed at the last stage to the
first input layer. In that case, the gradients required
to optimize each weight are computed by the simple
chain rule for derivatives. We refer to LeCun and
others [2015] for an in-depth review on deep learning.
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