29 research outputs found

    Diazoxide is a powerful cardioprotectant but is not feasible in a realistic infarct scenario

    Get PDF
    IntroductionDiazoxide is a powerful cardioprotective agent that activates mitochondrial ATP-dependent K-channels and stimulates mitochondrial respiration. Diazoxide reduced infarct size in isolated rodent heart preparations and upon pretreatment in juvenile pigs with coronary occlusion/reperfusion. We aimed to study the use of diazoxide in a more realistic adult pig model of reperfused acute myocardial infarction when diazoxide was administered just before reperfusion.Methods and resultsIn a first approach, we pretreated anaesthetised adult Göttingen minipigs with 7 mg kg−1 diazoxide (n = 5) or placebo (n = 5) intravenously over 10 min and subjected them to 60 min coronary occlusion and 180 min reperfusion; blood pressure was maintained by use of an aortic snare. The primary endpoint was infarct size (triphenyl tetrazolium chloride staining) as a fraction of area at risk; no-reflow area (thioflavin-S staining) was the secondary endpoint. In a second approach, diazoxide (n = 5) was given from 50 to 60 min coronary occlusion, and blood pressure was not maintained. There was a significant reduction in infarct size (22% ± 11% of area at risk with diazoxide pretreatment vs. 47% ± 11% with placebo) and area of no-reflow (14% ± 14% of infarct size with diazoxide pretreatment vs. 46% ± 20% with placebo). With diazoxide from 50 to 60 min coronary occlusion, however, there was marked hypotension, and infarct size (44% ± 7%) and area of no-reflow were not reduced (35% ± 25%).ConclusionsCardioprotection by diazoxide pretreatment was confirmed in adult pigs with reperfused acute myocardial infarction but is not feasible when diazoxide is administered in a more realistic scenario before reperfusion and causes hypotension

    Apyrase treatment of myocardial infarction according to a clinically applicable protocol fails to reduce myocardial injury in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectonucleotidase dependent adenosine generation has been implicated in preconditioning related cardioprotection against ischemia-reperfusion injury, and treatment with a soluble ectonucleotidase has been shown to reduce myocardial infarct size (IS) when applied prior to induction of ischemia. However, ectonucleotidase treatment according to a clinically applicable protocol, with administration only after induction of ischemia, has not previously been evaluated. We therefore investigated if treatment with the ectonucleotidase apyrase, according to a clinically applicable protocol, would reduce IS and microvascular obstruction (MO) in a large animal model.</p> <p>Methods</p> <p>A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min, in 16 anesthetized pigs (40-50 kg). The pigs were randomized to 40 min of 1 ml/min intracoronary infusion of apyrase (10 U/ml, n = 8) or saline (0.9 mg/ml, n = 8), twenty minutes after balloon inflation. Area at risk (AAR) was evaluated by <it>ex vivo </it>SPECT. IS and MO were evaluated by <it>ex vivo </it>MRI.</p> <p>Results</p> <p>No differences were observed between the apyrase group and saline group with respect to IS/AAR (75.7 ± 4.2% vs 69.4 ± 5.0%, p = NS) or MO (10.7 ± 4.8% vs 11.4 ± 4.8%, p = NS), but apyrase prolonged the post-ischemic reactive hyperemia.</p> <p>Conclusion</p> <p>Apyrase treatment according to a clinically applicable protocol, with administration of apyrase after induction of ischemia, does not reduce myocardial infarct size or microvascular obstruction.</p

    From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research"

    Get PDF
    In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore