70 research outputs found

    Superconducting gap structure of the skutterudite LaPt4Ge12 probed by specific heat and thermal transport

    Full text link
    We investigated the superconducting order parameter of the filled skutterudite LaPt4Ge12, with a transition temperature of Tc = 8.3 K. To this end, we performed temperature and magnetic-field dependent specific-heat and thermal-conductivity measurements. All data are compatible with a single superconducting s-wave gap. However, a multiband scenario cannot be ruled out. The results are discussed in the context of previous studies on the substitution series Pr1-xLaxPt4Ge12. They suggest compatible order parameters for the two end compounds LaPt4Ge12 and PrPt4Ge12. This is not consistent with a single s-wave gap in LaPt4Ge12 considering previous reports of unconventional and/or multiband superconductivity in PrPt4Ge12.Comment: 8 pages, 4 figure

    Multispeaker Speech Activity Detection for the ICSI Meeting Recorder

    Get PDF
    As part of a project into speech recognition in meeting environments, we have collected a corpus of multichannel meeting recordings. We expected the identification of speaker activity to be straightforward given that the participants had individual microphones, but simple approaches yielded unacceptably erroneous labelings, mainly due to crosstalk between nearby speakers and wide variations in channel characteristics. Therefore, we have developed a more sophisticated approach for multichannel speech activity detection using a simple hidden Markov model (HMM). A baseline HMM speech activity detector has been extended to use mixtures of Gaussians to achieve robustness for different speakers under different conditions. Feature normalization and crosscorrelation processing are used to increase the channel independence and to detect crosstalk. The use of both energy normalization and crosscorrelation based postprocessing results in a 35% relative reduction of the frame error rate. Speech recognition experiments show that it is beneficial in this multispeaker setting to use the output of the speech activity detector for presegmenting the recognizer input, achieving word error rates within 10% of those achieved with manual turn labeling

    Hybrid-Vlasov simulation of auroral proton precipitation in the cusps : Comparison of northward and southward interplanetary magnetic field driving

    Get PDF
    Particle precipitation is a central aspect of space weather, as it strongly couples the magnetosphere and the ionosphere and can be responsible for radio signal disruption at high latitudes. We present the first hybrid-Vlasov simulations of proton precipitation in the polar cusps. We use two runs from the Vlasiator model to compare cusp proton precipitation fluxes during southward and northward interplanetary magnetic field (IMF) driving. The simulations reproduce well-known features of cusp precipitation, such as a reverse dispersion of precipitating proton energies, with proton energies increasing with increasing geomagnetic latitude under northward IMF driving, and a nonreversed dispersion under southward IMF driving. The cusp is also found more polewards in the northward IMF simulation than in the southward IMF simulation. In addition, we find that the bursty precipitation during southward IMF driving is associated with the transit of flux transfer events in the vicinity of the cusp. In the northward IMF simulation, dual lobe reconnection takes place. As a consequence, in addition to the high-latitude precipitation spot associated with the lobe reconnection from the same hemisphere, we observe lower-latitude precipitating protons which originate from the opposite hemisphere's lobe reconnection site. The proton velocity distribution functions along the newly closed dayside magnetic field lines exhibit multiple proton beams travelling parallel and antiparallel to the magnetic field direction, which is consistent with previously reported observations with the Cluster spacecraft. In both runs, clear electromagnetic ion cyclotron waves are generated in the cusps and might further increase the calculated precipitating fluxes by scattering protons to the loss cone in the low-altitude cusp. Global kinetic simulations can improve the understanding of space weather by providing a detailed physical description of the entire near-Earth space and its internal couplings.Peer reviewe

    Asymmetries in the Earth's dayside magnetosheath : results from global hybrid-Vlasov simulations

    Get PDF
    Bounded by the bow shock and the magnetopause, the magnetosheath forms the interface between solar wind and magnetospheric plasmas and regulates solar wind-magnetosphere coupling. Previous works have revealed pronounced dawn-dusk asymmetries in the magnetosheath properties. The dependence of these asymmetries on the upstream parameters remains however largely unknown. One of the main sources of these asymmetries is the bow shock configuration, which is typically quasi-parallel on the dawn side and quasi-perpendicular on the dusk side of the terrestrial magnetosheath because of the Parker spiral orientation of the interplanetary magnetic field (IMF) at Earth. Most of these previous studies rely on collections of spacecraft measurements associated with a wide range of upstream conditions which are processed in order to obtain average values of the magnetosheath parameters. In this work, we use a different approach and quantify the magnetosheath asymmetries in global hybrid-Vlasov simulations performed with the Vlasiator model. We concentrate on three parameters: the magnetic field strength, the plasma density, and the flow velocity. We find that the Vlasiator model reproduces the polarity of the asymmetries accurately but that their level tends to be higher than in spacecraft measurements, probably because the magnetosheath parameters are obtained from a single set of upstream conditions in the simulation, making the asymmetries more prominent. A set of three runs with different upstream conditions allows us to investigate for the first time how the asymmetries change when the angle between the IMF and the Sun-Earth line is reduced and when the Alfven Mach number decreases. We find that a more radial IMF results in a stronger magnetic field asymmetry and a larger variability of the magnetosheath density. In contrast, a lower Alfven Mach number leads to a reduced magnetic field asymmetry and a decrease in the variability of the magnetosheath density, the latter likely due to weaker foreshock processes. Our results highlight the strong impact of the quasi-parallel shock and its associated foreshock on global magnetosheath properties, in particular on the magnetosheath density, which is extremely sensitive to transient quasi-parallel shock processes, even with the perfectly steady upstream conditions in our simulations. This could explain the large variability of the density asymmetry levels obtained from spacecraft measurements in previous studies.Peer reviewe

    Cavalier King Charles Spaniels with Chiari-like malformation and Syringomyelia have increased variability of spatio-temporal gait characteristics

    Get PDF
    Abstract Background Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. Methods We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. Results and conclusions We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier

    Transmission of foreshock waves through Earth’s bow shock

    Get PDF
    The Earth's magnetosphere and its bow shock, which is formed by the interaction of the supersonic solar wind with the terrestrial magnetic field, constitute a rich natural laboratory enabling in situ investigations of universal plasma processes. Under suitable interplanetary magnetic field conditions, a foreshock with intense wave activity forms upstream of the bow shock. So-called 30 s waves, named after their typical period at Earth, are the dominant wave mode in the foreshock and play an important role in modulating the shape of the shock front and affect particle reflection at the shock. These waves are also observed inside the magnetosphere and down to the Earth's surface, but how they are transmitted through the bow shock remains unknown. By combining state-of-the-art global numerical simulations and spacecraft observations, we demonstrate that the interaction of foreshock waves with the shock generates earthward-propagating, fast-mode waves, which reach the magnetosphere. These findings give crucial insight into the interaction of waves with collisionless shocks in general and their impact on the downstream medium.Peer reviewe

    Magnetosheath jet evolution as a function of lifetime : global hybrid-Vlasov simulations compared to MMS observations

    Get PDF
    Magnetosheath jets are regions of high dynamic pressure, which can traverse from the bow shock towards the magnetopause. Recent modelling efforts, limited to a single jet and a single set of upstream conditions, have provided the first estimations about how the jet parameters behave as a function of position within the magnetosheath. Here we expand the earlier results by doing the first statistical investigation of the jet dimensions and parameters as a function of their lifetime within the magnetosheath. To verify the simulation behaviour, we first identify jets from Magnetosphere Multiscale (MMS) spacecraft data (6142 in total) and confirm the Vlasiator jet general behaviour using statistics of 924 simulated individual jets. We find that the jets in the simulation are in quantitative agreement with the observations, confirming earlier findings related to jets using Vlasiator. The jet density, dynamic pressure, and magnetic field intensity show a sharp jump at the bow shock, which decreases towards the magnetopause. The jets appear compressive and cooler than the magnetosheath at the bow shock, while during their propagation towards the magnetopause they thermalise. Further, the shape of the jets flatten as they progress through the magnetosheath. They are able to maintain their flow velocity and direction within the magnetosheath flow, and they end up preferentially to the side of the magnetosheath behind the quasi-parallel shock. Finally, we find that Vlasiator jets during low solar wind Alfven Mach number M-A are shorter in duration, smaller in their extent, and weaker in terms of dynamic pressure and magnetic field intensity as compared to the jets during high M-A.Peer reviewe

    A global view of Pc3 wave activity in near-Earth space : Results from hybrid-Vlasov simulations

    Get PDF
    Ultra-low frequency (ULF) waves in the Pc3 range, with periods between 10-45 s, are routinely observed in Earth's dayside magnetosphere. They are thought to originate in the foreshock, which extends upstream of the quasi-parallel bow shock and is populated with shock-reflected particles. The foreshock is permeated with ULF waves generated by ion beam instabilities, most notably the "30-s " waves whose periods match those of the Pc3 waves and which are carried earthward by the solar wind flow. However, the global picture of Pc3 wave activity from the foreshock to the magnetosphere and its response to changing solar wind conditions is still poorly understood. In this study, we investigate the global distribution and properties of Pc3 waves across near-Earth space using global simulations performed with the hybrid-Vlasov model Vlasiator. The simulations enable us to study the waves in their global context, and compare their properties in the foreshock, magnetosheath and dayside magnetosphere, for different sets of upstream solar wind conditions. We find that in all three regions the Pc3 wave power peaks at higher frequencies when the interplanetary magnetic field (IMF) strength is larger, consistent with previous studies. The Pc3 wave power is significantly enhanced in all three regions for higher solar wind Alfven Mach number. As this parameter is known to affect the shock properties but has little impact inside the magnetosphere, this brings further support to the magnetospheric waves originating in the foreshock. Other parameters that are found to influence the foreshock wave power are the solar wind density and the IMF cone angle. Inside the magnetosphere, the wave power distribution depends strongly on the IMF orientation, which controls the foreshock position upstream of the bow shock. The wave power is largest when the angle between the IMF and the Sun-Earth line is smallest, suggesting that wave generation and transmission are most efficient in these conditions.Peer reviewe

    Connection Between Foreshock Structures and the Generation of Magnetosheath Jets : Vlasiator Results

    Get PDF
    Earth’s magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth’s bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet.Earth's magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth's bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet. Plain Language Summary The space around Earth is filled with plasma, the fourth state of matter. Earth's magnetic field shields our planet from the stream of plasma coming from the Sun, the solar wind. The solar wind plasma is slowed down at the Earth's bow shock, before it flows against and around the Earth's magnetic field in the magnetosheath. Sometimes, pulses of high density or velocity can occur in the magnetosheath that have the potential to disturb the inner regions of near-Earth space where many spacecraft orbit. We call these pulses magnetosheath jets. Magnetosheath jets have been observed by many spacecraft over the past few decades, but how they form has remained unclear. In this study, we use the Vlasiator model to simulate plasma in near-Earth space and investigate the origins of magnetosheath jets. We find that the formation of up to 75% of these jets can be explained by compressive structures in the foreshock, a region populated by intense wave activity extending sunward of the quasi-parallel bow shock, where interplanetary magnetic field lines allow shock-reflected particles to travel back toward the Sun.Peer reviewe
    corecore