86 research outputs found

    High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles

    Get PDF
    Cryo-electron microscopy techniques and computational 3-D reconstruction of macromolecular assemblies are tightly linked tools in modern structural biology. This symbiosis has produced vast amounts of detailed information on the structure and function of biological macromolecules. Typically, one of two fundamentally different strategies is used depending on the specimens and their environment. A: 3-D reconstruction based on repetitive and structurally identical unit cells that allow for averaging, and B: tomographic 3-D reconstructions where tilt-series between approximately ±60 and ±70° at small angular increments are collected from highly complex and flexible structures that are beyond averaging procedures, at least during the first round of 3-D reconstruction. Strategies of group A are averaging-based procedures and collect large number of 2-D projections at different angles that are computationally aligned, averaged together, and back-projected in 3-D space to reach a most complete 3-D dataset with high resolution, today often down to atomic detail. Evidently, success relies on structurally repetitive particles and an aligning procedure that unambiguously determines the angular relationship of all 2-D projections with respect to each other. The alignment procedure of small particles may rely on their packing into a regular array such as a 2-D crystal, an icosahedral (viral) particle, or a helical assembly. Critically important for cryo-methods, each particle will only be exposed once to the electron beam, making these procedures optimal for highest-resolution studies where beam-induced damage is a significant concern. In contrast, tomographic 3-D reconstruction procedures (group B) do not rely on averaging, but collect an entire dataset from the very same structure of interest. Data acquisition requires collecting a large series of tilted projections at angular increments of 1–2° or less and a tilt range of ±60° or more. Accordingly, tomographic data collection exposes its specimens to a large electron dose, which is particularly problematic for frozen-hydrated samples. Currently, cryo-electron tomography is a rapidly emerging technology, on one end driven by the newest developments of hardware such as super-stabile microscopy stages as well as the latest generation of direct electron detectors and cameras. On the other end, success also strongly depends on new software developments on all kinds of fronts such as tilt-series alignment and back-projection procedures that are all adapted to the very low-dose and therefore very noisy primary data. Here, we will review the status quo of cryo-electron microscopy and discuss the future of cellular cryo-electron tomography from data collection to data analysis, CTF-correction of tilt-series, post-tomographic sub-volume averaging, and 3-D particle classification. We will also discuss the pros and cons of plunge freezing of cellular specimens to vitrified sectioning procedures and their suitability for post-tomographic volume averaging despite multiple artifacts that may distort specimens to some degree

    Surface topography of microtubule walls decorated with monomeric and dimeric kinesin constructs

    Get PDF
    The surface topography of opened-up microtubule walls (sheets) decorated with monomeric and dimeric kinesin motor domains was investigated by freeze-drying and unidirectional metal shadowing. Electron microscopy of surface-shadowed specimens produces images with a high signal/noise ratio, which enable a direct observation of surface features below 2 nm detail. Here we investigate the inner and outer surface of microtubules and tubulin sheets with and without decoration by kinesin motor domains. Tubulin sheets are flattened walls of microtubules, keeping lateral protofilament contacts intact. Surface shadowing reveals the following features: (i) when the microtubule outside is exposed the surface relief is dominated by the bound motor domains. Monomeric motor constructs generate a strong 8 nm periodicity, corresponding to the binding of one motor domain per beta -tubulin heterodimer. This surface periodicity largely disappears when dimeric kinesin motor domains are used for decoration, even though it is still visible in negatively stained or frozen hydrated specimens, This could be explained by disorder in the binding of the second (loosely tethered) kinesin head, and/or disorder in the coiled-coil tail. (ii) Both surfaces of undecorated sheets or microtubules, as well as the inner surface of decorated sheets, reveal a strong 4 nm repeat (due to the periodicity of tubulin monomers) and a weak 8 nm repeat (due to slight differences between alpha- and beta -tubulin). The differences between alpha- and beta -tubulin on the inner surface are stronger than expected from cryo-electron microscopy of unstained microtubules, indicating the existence of tubulin subdomain-specific surface properties that reflect the surface corrugation and hence metal deposition during evaporation. The 16 nm periodicity visible in some negatively stained specimens (caused by the pairing of cooperatively bound kinesin dimers) is not detected by surface shadowing

    Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation

    Get PDF
    Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account

    Structures of kinesin and kinesin–microtubule interactions

    No full text
    Several X-ray crystal structures of kinesin motor domains have recently been solved at high resolution (∌0.2–0.3 nm), in both their monomeric and dimeric states. They show the folding of the polypeptide chain and different arrangements of subunits in the dimer. In addition, cryo-electron microscopy and image reconstruction have revealed microtubules decorated with kinesin at intermediate resolution (∌2 nm), showing the distribution and orientation of kinesin heads on the microtubule surface. The comparison of the X-ray and electron microscopy results yields a model of how monomeric motor domains bind to the microtubule but the binding of dimeric motors, their stoichiometry, or the influence of nucleotides remains a matter of debate

    Structural rearrangements in tubulin following microtubule formation

    No full text
    Microtubules are essential cytoskeletal structures that mediate several dynamic processes in a cell. To shed light on the structural processes relating to microtubule formation and dynamic instability, we investigated microtubules composed of 15 protofilaments using cryo-electron microscopy, helical image reconstruction and computational modelling. Analysis of the configuration of the αÎČ-tubulin heterodimer shows distinct structural differences in both subunits, and illustrates that the tubulin subunits have different roles in the microtubule lattice. Our modelling data suggest that after GTP hydrolysis microtubules, adopt a conformational state somewhere between a straight protofilament conformation—as found in zinc-induced tubulin sheets—and an outward curved conformation—as found in tubulin–stathmin complexes. The tendency towards a curved conformation seems to be mediated mostly by ÎČ-tubulin, whereas α-tubulin resembles a state more related to the straight structure. Our data suggest a possible explanation of dynamic instability of microtubules, and for nucleotide-sensitive microtubule-binding properties of microtubule-associated proteins and molecular motors
    • 

    corecore