59 research outputs found

    Radial line-scans as representative sampling strategy in dried-droplet laser ablation of liquid samples deposited on pre-cut filter paper disks

    Get PDF
    Nebulising liquid samples and using the aerosol thus obtained for further analysis is the standard method in many current analytical techniques, also with inductively coupled plasma (ICP)-based devices. With such a set-up, quantification via external calibration is usually straightforward for samples with aqueous or close-to-aqueous matrix composition. However, there is a variety of more complex samples. Such samples can be found in medical, biological, technological and industrial contexts and can range from body fluids, like blood or urine, to fuel additives or fermentation broths. Specialized nebulizer systems or careful digestion and dilution are required to tackle such demanding sample matrices. One alternative approach is to convert the liquid into a dried solid and to use laser ablation for sample introduction. Up to now, this approach required the application of internal standards or matrix-adjusted calibration due to matrix effects. In this contribution, we show a way to circumvent these matrix effects while using simple external calibration for quantification. The principle of representative sampling that we propose uses radial line-scans across the dried residue. This compensates for centro-symmetric inhomogeneities typically observed in dried spots. The effectiveness of the proposed sampling strategy is exemplified via the determination of phosphorus in biochemical fermentation media. However, the universal viability of the presented measurement protocol is postulated. Detection limits using laser ablation-ICP-optical emission spectrometry were in the order of 40 mu g mL(-1) with a reproducibility of 10 % relative standard deviation (n = 4, concentration = 10 times the quantification limit). The reported sensitivity is fit-for-purpose in the biochemical context described here, but could be improved using ICP-mass spectrometry, if future analytical tasks would require it. Trueness of the proposed method was investigated by cross-validation with conventional liquid measurements, and by analyzing IAEA-153 reference material (Trace Elements in Milk Powder); a good agreement with the certified value for phosphorus was obtaine

    Metal(loid) bioaccessibility and inhalation risk assessment: A comparison between an urban and an industrial area

    Get PDF
    The content of metal(loid)s in particulate matter (PM) is of special concern due to their contribution to overall (PM) toxicity. In this study, the bioaccessibility and human health risk of potentially toxic metal(loid)s associated with PM10 were investigated in two areas of the Cantabrian region (northern Spain) with different levels of exposure: an industrial area mainly influenced by a ferromanganese alloy plant; and an urban area consisting mainly of residential and commercial activities, but also affected, albeit to a lesser extent by the ferroalloy plant. Total content and bioaccessible fractions in simulated lung fluids (SLFs) of Fe, Mn, Zn, Ni, Cu, Sb, Mo, Cd and Pb were determined by ICP-MS. Gamble's solution and artificial lysosomal fluid (ALF) were used to mimic different conditions inside the human respiratory system. A health risk assessment was performed based on the United States Environmental Protection Agency's (USEPA) methodology. Most metal(loid)s showed moderate and high bioaccessibility in Gamble's solution and ALF, respectively. Despite the high variability between the samples, metal(loid) bioaccessibility was found to be higher on average at the industrial site, suggesting a greater hazard to human health in the proximity of the main metal(loid) sources. Based on the results of the risk assessment, the non-carcinogenic risk associated with Mn exposure was above the safe limit (HQ> 1) under all the studied scenarios at the industrial site and under some specific scenarios at the urban location. The estimated carcinogenic inhalation risk for Cd exposure at the industrial site was found to be within the range between 1.0 × 10−6 to 1.0 × 10−4 (uncertainty range) under some scenarios. The results obtained in this study indicate that Mn and Cd inhalation exposure occurring in the vicinities of the studied areas may pose a human health risk.This work was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through the CTM2013–43904R Project. Ana Hernández-Pellón would like to thank the Ministry of Economy and Competitiveness (MINECO) for the FPI and research stay grants awarded, reference numbers BES-2014-068790 and EEBB-I-17-12031

    Recent advances in quantitative LA-ICP-MS analysis : challenges and solutions in the life sciences and environmental chemistry

    Get PDF
    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely accepted method for direct sampling of solid materials for trace elemental analysis. The number of reported applications is high and the application range is broad; besides geochemistry, LA-ICP-MS is mostly used in environmental chemistry and the life sciences. This review focuses on the application of LA-ICP-MS for quantification of trace elements in environmental, biological, and medical samples. The fundamental problems of LA-ICP-MS, such as sample-dependent ablation behavior and elemental fractionation, can be even more pronounced in environmental and life science applications as a result of the large variety of sample types and conditions. Besides variations in composition, the range of available sample states is highly diverse, including powders (e.g., soil samples, fly ash), hard tissues (e.g., bones, teeth), soft tissues (e.g., plants, tissue thin-cuts), or liquid samples (e.g., whole blood). Within this article, quantification approaches that have been proposed in the past are critically discussed and compared regarding the results obtained in the applications described. Although a large variety of sample types is discussed within this article, the quantification approaches used are similar for many analytical questions and have only been adapted to the specific questions. Nevertheless, none of them has proven to be a universally applicable method

    mass concentration and size distribution of atmospheric particulate matter in an urban environment

    Get PDF
    To investigate the ambient mass concentration, size-distribution and temporal variability of atmospheric particulate matter (PM), a long-term monitoring campaign was undertaken at an urban background site in Como, Northern Italy, from May 2015 to March 2016. A 13-stage Low Pressure Impactor (DLPI) was used for the collection of size-segregated particulates in the 0.028-10 μm size range. The results revealed a good level of agreement between DLPI and a co-located Harvard-type PM_(2.5) Impactor, allowing them to be classified as comparable and characterized by a reciprocal predictability. The PM concentration levels varied greatly between the different 5-days monitoring sessions, with higher mean mass concentrations during the heating season. Appreciable seasonal differences were found for particles between 0.15 and 1.60 μm that, on average, registered concentration levels 3.5 times higher during the heating season (mean: 28.2 μg m^(-3); median: 24.4 μg m^(-3)) compared to the non-heating season (mean: 8.3 μg m^(-3); median: 7.6 μg m^(-3)). No relevant and significant differences were detected for the coarser ranges (> 1.60 μm). Temporal variabilities were influenced by typical PM urban sources (e.g., household heating, traffic), that significantly affected fine and submicrometer particles, and were related to meteorological factors. Ambient air particles exhibited a trimodal distribution: a first and sharp peak more pronounced during the heating season was identified between 0.3 and 0.5 μm and two other slight peaks in the coarse mode were centered on approximately 3 and 8 μm. No relevant differences were found in the shape of the size-distribution between the two investigated seasons. The mean PM_(2.5) (22.4 μg m^(-3)) and PM_(10) (27.7 μg m^(-3)) concentrations monitored in the study area exceeded the annual Air Quality Guideline Values (respectively equal to 10 μg m^(-3) and 20 μg m^(-3)) established by the World Health Organization

    Methodology and applications of elemental mapping by laser induced breakdown spectroscopy

    Get PDF
    In the last few years, LIBS has become an established technique for the assessment of elemental concentrations in various sample types. However, for many applications knowledge about the overall elemental composition is not sufficient. In addition, detailed information about the elemental distribution within a heterogeneous sample is needed. LIBS has become of great interest in elemental imaging studies, since this technique allows to associate the obtained elemental composition information with the spatial coordinates of the investigated sample. The possibility of simultaneous multi-elemental analysis of major, minor, and trace constituents in almost all types of solid materials with no or negligible sample preparation combined with a high speed of analysis are benefits which make LIBS especially attractive when compared to other elemental imaging techniques. The first part of this review is aimed at providing information about the instrumental requirements necessary for successful LIBS imaging measurements and points out and discusses state-of-the-art LIBS instrumentation and upcoming developments. The second part is dedicated to data processing and evaluation of LIBS imaging data. This chapter is focused on different approaches of multivariate data evaluation and chemometrics which can be used e.g. for classification but also for the quantification of obtained LIBS imaging data. In the final part, current literature of different LIBS imaging applications ranging from bioimaging, geoscientific and cultural heritage studies to the field of materials science is summarized and reviewed. 2020 The Authors. Published by Elsevier B.V
    corecore