2,295 research outputs found
Quantum theory of photonic crystal polaritons
We formulate a full quantum mechanical theory of the interaction between
electromagnetic modes in photonic crystal slabs and quantum well excitons
embedded in the photonic structure. We apply the formalism to a high index
dielectric layer with a periodic patterning suspended in air. The strong
coupling between electromagnetic modes lying above the cladding light line and
exciton center of mass eigenfunctions manifests itself with the typical
anticrossing behavior. The resulting band dispersion corresponds to the
quasi-particles coming from the mixing of electromagnetic and material
excitations, which we call photonic crystal polaritons. We compare the results
obtained by using the quantum theory to variable angle reflectance spectra
coming from a scattering matrix approach, and we find very good quantitative
agreement.Comment: Proceedings of the "8th Conference on Optics of Excitons in Confined
Systems" (OECS-8), 15-17 September 2003, Lecce (Italy
ALMA imaging of SDP.81 - I. A pixelated reconstruction of the far-infrared continuum emission
We present a sub-50 pc-scale analysis of the gravitational lens system SDP.81
at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA)
science verification data. We model both the mass distribution of the
gravitational lensing galaxy and the pixelated surface brightness distribution
of the background source using a novel Bayesian technique that fits the data
directly in visibility space. We find the 1 and 1.3 mm dust emission to be
magnified by a factor of u_tot = 17.6+/-0.4, giving an intrinsic total
star-formation rate of 315+/-60 M_sol/yr and a dust mass of 6.4+/-1.5*10^8
M_sol. The reconstructed dust emission is found to be non-uniform, but composed
of multiple regions that are heated by both diffuse and strongly clumped
star-formation. The highest surface brightness region is a ~1.9*0.7 kpc
disk-like structure, whose small extent is consistent with a potential
size-bias in gravitationally lensed starbursts. Although surrounded by extended
star formation, with a density of 20-30+/-10 M_sol/yr/kpc^2, the disk contains
three compact regions with densities that peak between 120-190+/-20
M_sol/yr/kpc^2. Such star-formation rate densities are below what is expected
for Eddington-limited star-formation by a radiation pressure supported
starburst. There is also a tentative variation in the spectral slope of the
different star-forming regions, which is likely due to a change in the dust
temperature and/or opacity across the source.Comment: MNRAS accepted 2015 April 1
Polariton Dispersion Law in Periodic Bragg and Near-Bragg Multiple Quantum Well Structures
The structure of polariton spectrum is analyzed for periodic multiple quantum
well structures with periods at or close to Bragg resonance condition at the
wavelength of the exciton resonance. The results obtained used to discuss
recent reflection and luminescent experiments by M. H\"{u}bner et al [Phys.
Rev. Lett. {\bf 83}, 2841 (1999)] carried out with long multiple quantum well
structures. It is argued that the discussion of quantum well structures with
large number of wells is more appropriate in terms of normal modes of infinite
periodic structures rather then in terms of super- and sub- radiant modes.Comment: replaced with a new version, an error in one of the equations is
correcte
ALMA imaging of SDP.81 - II. A pixelated reconstruction of the CO emission lines
We present a sub-100 pc-scale analysis of the CO molecular gas emission and
kinematics of the gravitational lens system SDP.81 at redshift 3.042 using
Atacama Large Millimetre/submillimetre Array (ALMA) science verification data
and a visibility-plane lens reconstruction technique. We find clear evidence
for an excitation dependent structure in the unlensed molecular gas
distribution, with emission in CO (5-4) being significantly more diffuse and
structured than in CO (8-7). The intrinsic line luminosity ratio is r_8-7/5-4 =
0.30 +/- 0.04, which is consistent with other low-excitation starbursts at z ~
3. An analysis of the velocity fields shows evidence for a star-forming disk
with multiple velocity components that is consistent with a
merger/post-coalescence merger scenario, and a dynamical mass of M(< 1.56 kpc)
= 1.6 +/- 0.6 x 10^10 M_sol . Source reconstructions from ALMA and the Hubble
Space Telescope show that the stellar component is offset from the molecular
gas and dust components. Together with Karl G. Jansky Very Large Array CO (1-0)
data, they provide corroborative evidence for a complex ~2 kpc-scale starburst
that is embedded within a larger ~15 kpc structure.Comment: MNRAS accepted, 6th July 201
Exciton polaritons in two-dimensional photonic crystals
Experimental evidence of strong coupling between excitons confined in a
quantum well and the photonic modes of a two-dimensional dielectric lattice is
reported. Both resonant scattering and photoluminescence spectra at low
temperature show the anticrossing of the polariton branches, fingerprint of
strong coupling regime. The experiments are successfully interpreted in terms
of a quantum theory of exciton-photon coupling in the investigated structure.
These results show that the polariton dispersion can be tailored by properly
varying the photonic crystal lattice parameter, which opens the possibility to
obtain the generation of entangled photon pairs through polariton stimulated
scattering.Comment: 5 pages, 4 figure
Probing Cool and Warm Infrared Galaxies using Photometric and Structural Measures
We have analyzed a sample of nearby cool and warm infrared (IR) galaxies
using photometric and structural parameters. The set of measures include
far-infrared color (), total IR
luminosity (), radio surface brightness as well as radio,
near-infrared, and optical sizes. In a given luminosity range cool and warm
galaxies are considered as those sources that are found approximately below and above the mean color in the far-infrared
diagram. We find that galaxy radio surface brightness is well correlated with
color whereas size is less well correlated with color. Our analysis indicates
that IR galaxies that are dominated by cool dust are large, massive spirals
that are not strongly interacting or merging and presumably the ones with the
least active star formation. Dust in these cool objects is less centrally
concentrated than in the more typical luminous and ultra-luminous IR galaxies
that are dominated by warm dust. Our study also shows that low luminosity early
type unbarred and transitional spirals are responsible for the large scatter in
the diagram. Among highly luminous galaxies, late type unbarred
spirals are predominately warm, and early type unbarred and barred are
systematically cooler. We highlight the significance of diagram
in terms of local and high redshifts sub-millimeter galaxies.Comment: Accepted for publication in ApJ, 2006, 23 pages, 3 postscript
figures, 1 table. The table can be obtained on request from the author
CO excitation in the Seyfert galaxy NGC7130
We present a coherent multi-band modelling of the CO Spectral Energy
Distribution of the local Seyfert Galaxy NGC7130 to assess the impact of the
AGN activity on the molecular gas. We take advantage of all the available data
from X-ray to the sub-mm, including ALMA data. The high-resolution (~0.2") ALMA
CO(6-5) data constrain the spatial extension of the CO emission down to ~70 pc
scale. From the analysis of the archival CHANDRA and NuSTAR data, we infer the
presence of a buried, Compton-thick AGN of moderate luminosity, L_2-10keV ~
1.6x10^{43} ergs-1. We explore photodissociation and X-ray-dominated regions
(PDRs and XDRs) models to reproduce the CO emission. We find that PDRs can
reproduce the CO lines up to J~6, however, the higher rotational ladder
requires the presence of a separate source of excitation. We consider X-ray
heating by the AGN as a source of excitation, and find that it can reproduce
the observed CO Spectral Energy Distribution. By adopting a composite PDR+XDR
model, we derive molecular cloud properties. Our study clearly indicates the
capabilities offered by current-generation of instruments to shed light on the
properties of nearby galaxies adopting state-of-the art physical modelling.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter
Self-tuned quantum dot gain in photonic crystal lasers
We demonstrate that very few (1 to 3) quantum dots as a gain medium are
sufficient to realize a photonic crystal laser based on a high-quality
nanocavity. Photon correlation measurements show a transition from a thermal to
a coherent light state proving that lasing action occurs at ultra-low
thresholds. Observation of lasing is unexpected since the cavity mode is in
general not resonant with the discrete quantum dot states and emission at those
frequencies is suppressed. In this situation, the quasi-continuous quantum dot
states become crucial since they provide an energy-transfer channel into the
lasing mode, effectively leading to a self-tuned resonance for the gain medium.Comment: 4 pages, 4 figures, submitted to Phys. Re
Band structure and optical properties of opal photonic crystals
A theoretical approach for the interpretation of reflectance spectra of opal
photonic crystals with fcc structure and (111) surface orientation is
presented. It is based on the calculation of photonic bands and density of
states corresponding to a specified angle of incidence in air. The results
yield a clear distinction between diffraction in the direction of light
propagation by (111) family planes (leading to the formation of a stop band)
and diffraction in other directions by higher-order planes (corresponding to
the excitation of photonic modes in the crystal). Reflectance measurements on
artificial opals made of self-assembled polystyrene spheres are analyzed
according to the theoretical scheme and give evidence of diffraction by
higher-order crystalline planes in the photonic structure.Comment: to appear in PR
- …