The theory of a response of a two-energy-level system, irradiated by
symmetrical light pulses, has been developed.(Suchlike electronic system
approximates under the definite conditions a single ideal quantum well (QW) in
a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or
in magnetic field absence.) The general formulae for the time-dependence of
non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission
{\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown
that the singularities of three types exist on the dependencies {\cal R}(t),
{\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal
A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0
takes place. The oscillations are more easily observable when
\Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection
and transparency singularities are examined when the frequency \omega_l is
detuned.Comment: 9 pages, 13 figures with caption