304 research outputs found

    Resource Constrained Semantic Segmentation for Waste Sorting

    Full text link
    This work addresses the need for efficient waste sorting strategies in Materials Recovery Facilities to minimize the environmental impact of rising waste. We propose resource-constrained semantic segmentation models for segmenting recyclable waste in industrial settings. Our goal is to develop models that fit within a 10MB memory constraint, suitable for edge applications with limited processing capacity. We perform the experiments on three networks: ICNet, BiSeNet (Xception39 backbone), and ENet. Given the aforementioned limitation, we implement quantization and pruning techniques on the broader nets, achieving positive results while marginally impacting the Mean IoU metric. Furthermore, we propose a combination of Focal and Lov\'asz loss that addresses the implicit class imbalance resulting in better performance compared with the Cross-entropy loss function.Comment: 8 pages, 5 figure

    Probing AGN Inner Structure with X-ray Obscured Type 1 AGN

    Get PDF
    Using the X-ray-selected active galactic nuclei (AGN) from the XMM-XXL north survey and the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic follow-up of them, we compare the properties of X-ray unobscured and obscured broad-line AGN (BLAGN1 and BLAGN2; NHN_\textrm{H}below and above 1021.510^{21.5} cm−2^{-2}), including their X-ray luminosity LXL_X, black hole mass, Eddington ratio λEdd\lambda_{\textrm{Edd}}, optical continuum and line features. We find that BLAGN2 have systematically larger broad line widths and hence apparently higher (lower) MBHM_{\textrm{BH}} (λEdd\lambda_{\textrm{Edd}}) than BLAGN1. We also find that the X-ray obscuration in BLAGN tends to coincide with optical dust extinction, which is optically thinner than that in narrow-line AGN (NLAGN) and likely partial-covering to the broad line region. All the results can be explained in the framework of a multi-component, clumpy torus model by interpreting BLAGN2 as an intermediate type between BLAGN1 and NLAGN in terms of an intermediate inclination angle.Comment: 21 pages, 12 figures, published in MNRA

    Hippocampal neuroplasticity and inflammation: relevance for multiple sclerosis

    Get PDF
    Cognitive impairment is very frequent during multiple sclerosis (MS), involving approximately 40–70% of the patients, with a profound impact on patient's life. It is now established that among the various central nervous system (CNS) structures involved during the course of MS, the hippocampus is particularly sensitive to the detrimental effects of neuroinflammation. Different studies demonstrated hippocampal involvement during MS, in association with depression and cognitive impairment, such as verbal and visuo-spatial memory deficits, even during the earlier phases of the disease. These cognitive alterations could represent the visible consequences of a hidden synaptic impairment. Indeed, neuronal and immune functions are intertwined and the immune system is able to modulate the efficacy of synaptic transmission and the induction of the main forms of synaptic plasticity, such as long term potentiation (LTP). Hippocampal synaptic plasticity has been studied during the last decades as the physiological basis of human learning and memory and its disruption can be associated with behavioral and cognitive abnormalities. The aim of the present work is to review the available evidence about the presence of hippocampal synaptic plasticity alterations in experimental models of MS, specifically during the course of experimental autoimmune encephalomyelitis (EAE) and to discuss their relevance with regard to human MS. Indeed, the failure of synapses to express plasticity during neuroinflammation could potentially lead to a progressive failure of the brain plastic reserve, possibly contributing to disability progression and cognitive impairment during MS

    Laboratory measurements of modal noise on optical fiber

    Get PDF
    Many scientific instruments are nowadays coupled to the telescope through optical fibers. This is also the case of the current configuration of GIANO, the high resolution near infrared echelle spectrograph installed at the TNG telescope. As experienced and frequent users of the IR optical fiber, the GIANO building team decided to go deep in the characterization of the optical fiber in the IR band, and in particular to understand and analyze the fiber modal noise. This work is also a preparatory study for the future HIRES@E-ELT instrument design. This paper consists in the description of the fiber laboratory tests, and in the explanation of the results. The whole job defines a wider comprehension of the modal noise, and demonstrates the existence of two aspects influencing this noise. The first one, well known in literature, refers to the interferences between the fiber modes at the exit endface of the fiber, and it can be mitigated by mechanical scrambling techniques. The second one, unknown before, is entirely dependent on the way in which light is injected at the entrance of the fiber, and no mitigation have been observed with any classical scrambling technique (e.g. double-scramblers). These considerations apply to both ZBLAN or fused silica optical fiber, and to both circular and octagonal core shape

    MORPHOLOGICALLY BIO-INSPIRED HIERARCHICAL NYLON 6,6 ELECTROSPUN STRUCTURES FOR SOFT-ROBOTICS APPLICATIONS

    Get PDF
    The last decades have seen an increasing attention on a new, ground-breaking field, soft-robotics [1]. Soft-robotics tries to overcome the limits of classical rigid robots, developing bioinspired structures with compliant and soft materials. Skeletal muscle is a biological, hierarchically arranged fibrous structure (Fig A), suitable to inspire innovative soft actuators. The possibility to mimic muscles and soft tissues has been demonstrated through the use of the electrospinning technique [2]. The aim of the present study was to develop and characterize innovative muscle-inspired, hierarchically arranged electrospun structures made of Nylon 6,6 for soft-robotics applications. In order to mimic skeletal muscle myofibrils [3], mats of aligned Nylon 6,6 nanofibers were electrospun on a rotating drum collector. To reproduce skeletal muscle fibers and fascicles morphology [3], the mats were cut in stripes and wrapped up on the drum, producing bundles of axially aligned nanofibers. The bundles were then pulled out from the drum, obtaining ring-shaped bundles. To mimic a whole skeletal muscle with its epimysium membrane [3], 2-levels hierarchical structure was developed (Fig B). Several bundles were aligned and packed together using a nanofibrous sheath produced through an innovative electrospinning setup [4]. Finally, in order to mimic also the skeletal muscle fascicles and perimysium [3], a 3-levels hierarchical structure was obtained by grouping together three 2-levels hierarchical structures, produced as previously described, with an additional electrospun sheath (Fig C). A morphological investigation of the different electrospun structures was carried out with scanning electron microscopy (SEM) and high-resolution x-ray tomography (XCT). The alignment of the nanofibers of the electrospun sheaths and the internal bundles, was quantified with a previously validated methodology [5]. The bundles and the 2-levels hierarchical structures were also mechanically characterized with a monotonic tensile test. The level of alignment of the nanofibers in the sheaths has proved to be tuneable by modifying the electrospinning parameters. The electrospun sheaths are also capable to tighten the structures wrapped inside, reducing their cross-sectional area and improving the apparent mechanical strength and stiffness. The high-resolution imaging confirmed that the mean diameters of the different hierarchical structures were comparable to the corresponding structures of biological skeletal muscle [3]. The directionality analysis on both bundles and sheaths nanofibers showed comparable levels of alignment with corresponding skeletal muscles fibrous tissues [3]. The mechanical test on the structures revealed a non-linear behaviour typical of soft tissue. The 2- levels hierarchical structures showed mechanical properties roughly proportional to the number of single bundles incorporated (with a possible underestimation of the ultimate strength, due to a stress concentration at the grips). In conclusion, this innovative electrospinning approach to produce hierarchically-arranged structures will be suitable to develop muscle-inspired assemblies. We will explore the possibility of incorporating adequate contracting ability so as to build soft actuators

    NGC 2992: The interplay between the multiphase disk, wind and radio bubbles

    Full text link
    We present an analysis of the gas kinematics in NGC 2992, based on VLT/MUSE, ALMA and VLA data, aimed at characterising the disk, the wind and their interplay in the cold molecular and warm ionised phases. CO(2-1) and Hα \rm \alpha~ arise from a multiphase disk with inclination 80 deg and radii 1.5 and 1.8 kpc, respectively. We find that the velocity dispersion of the cold molecular phase is consistent with that of star forming galaxies at the same redshift, except in the inner 600 pc region, and in the region between the cone walls and the disk. This suggests that a disk-wind interaction locally boosts the gas turbulence. We detect a clumpy ionised wind distributed in two wide opening angle ionisation cones reaching scales of 7 kpc. The [O III] wind expands with velocity exceeding -1000 km/s in the inner 600 pc, a factor of 5 larger than the previously reported wind velocity. Based on spatially resolved electron density and ionisation parameter maps, we infer an ionised outflow mass of Mof,ion=(3.2±0.3)× 107 M⊙M_{\rm of,ion} = (3.2 \pm 0.3) \times \, 10^7 \, M_{\odot}, and a total ionised outflow rate of M˙of,ion=13.5±1\dot M_{\rm of,ion}=13.5\pm1 \sfr. We detected clumps of cold molecular gas located above and below the disk reaching maximum projected distances and velocities of 1.7 kpc and 200 km/s, respectively. On these scales, the wind is multiphase, with a fast ionised component and a slower molecular one, and a total mass of Mof,ion+mol=5.8×107 M⊙M_{\rm of, ion+mol}= 5.8 \times 10^7 \, M_{\odot}, of which the molecular component carries the bulk of the mass. The dusty molecular outflowing clumps and the turbulent ionised gas are located at the edges of the radio bubbles, suggesting that the bubbles interact with the surrounding medium through shocks. We detect a dust reservoir co-spatial with the molecular disk, with a cold dust mass Mdust=(4.04±0.03)× 106 M⊙M_{\rm dust} = (4.04 \pm 0.03) \times \, 10^{6} \, M_{\odot}.Comment: 19 pages, 17 figures, 6 tables; Accepted by A&
    • …
    corecore