9 research outputs found

    Electrochemical and morphological layer-by-layer characterization of electrode interfaces during a label-free impedimetric immunosensor build-up: The case of ochratoxin A

    Get PDF
    Abstract In this paper, we provide an in-depth electrochemical characterization of a label-free impedimetric immunosensor for rapid detection of ochratoxin A. The sensor was based on a carbodiimide-mediated amide coupling reaction to immobilize a specific ochratoxin A antibody onto 4-mercaptobenzoic acid-modified commercial screen-printed gold electrode. Different variables affecting the performance of the developed sensor were optimized. Cyclic voltammetry and electrochemical impedance spectroscopy were used to analyse modifications of the interfacial properties occurring at each step of the biosensor assembly. The free electrode surface area, the diffusion coefficient, the peak-to-peak separation, the heterogeneous electron transfer constant, and charge transfer resistance have been calculated and compared. The decrease of charge transfer resistance values was linearly proportional to the ochratoxin A concentration in the range of 0.37– 2.86 ng/mL, with a detection limit of 0.19 ng/mL, a limit of quantification of 0.40 ng/mL, very good selectivity, reproducibility, and storage stability in the absence of antifouling agents. Surface morphology and topographic data at each step of the immunosensor assembly were studied by Atomic Force Microscopy, which also provided information on the specific binding of ochratoxin A. Finally, contact angle measurements revealed the hydrophilicity evolution of the surface during sensor assembly enabling OTA binding

    Combined FTIR Matrix Isolation and Density Functional Studies of Indole-3-Pyruvic Acid Molecule. Spectroscopic Evidence of Gas-Phase Tautomerism

    No full text
    The vibrational spectrum of matrix-isolated indole-3-pyruvic acid has been studied aiming to obtain information about the structures of the stable vapour-phase forms of the molecule. Together with results from theoretical density functional calculations, the spectroscopic data enable to undertake an attribution for most of the observed bands. The FTIR spectrum of crystalline indole-3-pyruvic acid has been compared with that of matrix isolation study

    Photosystem-II D1 protein mutants of Chlamydomonas reinhardtii in relation to metabolic rewiring and remodelling of H-bond network at QB site

    No full text
    Abstract Photosystem II (PSII) reaction centre D1 protein of oxygenic phototrophs is pivotal for sustaining photosynthesis. Also, it is targeted by herbicides and herbicide-resistant weeds harbour single amino acid substitutions in D1. Conservation of D1 primary structure is seminal in the photosynthetic performance in many diverse species. In this study, we analysed built-in and environmentally-induced (high temperature and high photon fluency – HT/HL) phenotypes of two D1 mutants of Chlamydomonas reinhardtii with Ala250Arg (A250R) and Ser264Lys (S264K) substitutions. Both mutations differentially affected efficiency of electron transport and oxygen production. In addition, targeted metabolomics revealed that the mutants undergo specific differences in primary and secondary metabolism, namely, amino acids, organic acids, pigments, NAD, xanthophylls and carotenes. Levels of lutein, β-carotene and zeaxanthin were in sync with their corresponding gene transcripts in response to HT/HL stress treatment in the parental (IL) and A250R strains. D1 structure analysis indicated that, among other effects, remodelling of H-bond network at the QB site might underpin the observed phenotypes. Thus, the D1 protein, in addition to being pivotal for efficient photosynthesis, may have a moonlighting role in rewiring of specific metabolic pathways, possibly involving retrograde signalling

    BIOKIS: a model payload for multidisciplinary experiments in microgravity.

    Get PDF
    In this paper we report about 1 the BIOKIS 2 payload: a multidisciplinary set of experiments and measurements in the fields of Biology and Dosimetry performed in microgravity. BIOKIS took advantage of the last STS-134 Endeavour mission and engineering state of the art in Space Life Science. The BIOKIS payload is compact, efficient, and capable to host experiments with different samples and science disciplines. Moreover, the time overlap of biological experiments and dosimetry measurements will produce more insightful information

    Friends, Businesspeople, and Relationship Roles: A Conceptual Framework and a Research Agenda

    No full text
    corecore