5,496 research outputs found

    The Effect of Spectral Composition on the Photochemical Production of Hydrogen Peroxide in Lake Water

    Get PDF
    Hydrogen peroxide was produced when samples of lake water were exposed to direct or filtered sunlight in which UV or UV(B+C) light was selectively removed. In all cases, the concentration of hydrogen peroxide increased linearly with time-integrated irradiance. While both visible and UV light can induce the formation of hydrogen peroxide, the contribution from the latter was disproportionately large as it was responsible for about two-thirds of the formation of hydrogen peroxide. Among the UV lights, the contributions from UV-A and UV-(B+C) light were 70% and 30% respectively. The contribution from UV-A light was equivalent to about one half of the total production of hydrogen peroxide. Thus, relative to its contribution to the total irradiance in the solar spectrum, UV-A light is the most efficient type of light for the formation of hydrogen peroxide in lake waters

    UV-optical from space

    Get PDF
    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments

    Effects of IFN-B on TRAIL and Decoy Receptor Expression in Different Immune Cell Populations from MS Patients with Distinct Disease Subtypes

    Get PDF
    Using quantitative RT-PCR, we compared mRNA levels for TRAIL [tumor necrosis factor (TNF)–related apoptosis-inducing ligand] and its receptors in various immune cell subsets derived from the peripheral blood of untreated normal subjects (NS) and patients with distinct subtypes of multiple sclerosis (MS): active relapsing-remitting MS (RRA), quiescent relapsing-remitting MS (RRQ), secondary-progressive MS (SPMS) or primary-progressive MS (PPMS). Consistent with a role for TRAIL in the mechanism of action of interferon-β (IFN-β), TRAIL mRNA levels were increased in monocytes from patients clinically responsive to IFN-β (RRQ) but not those unresponsive to this therapeutic (RRA). TRAIL-R3 (decoy receptor) expression was elevated in T cells from untreated RRMS patients while IFN-β therapy reversed this increase suggesting that IFN-β may promote the apoptotic elimination of autoreactive T cells by increasing the amount of TRAIL available to activate TRAIL death receptors. Serum concentrations of soluble TRAIL were increased to a similar extent by IFN-β therapy in RRQ, RRA and SPMS patients that had not generated neutralizing antibodies against this cytokine. Although our findings suggest altered TRAIL signaling may play a role in MS pathogenesis and IFN-β therapy, they do not support use of TRAIL as a surrogate marker for clinical responsiveness to this therapeutic

    Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light

    Get PDF
    This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatment on the final day. Colony forming units (CFU) of the treated biofilm, changes in fluorescence (∆F; QLF-Digital BiluminatorTM), lesion depth (L), and integrated mineral loss (∆Z; both transverse microradiography) were quantified at the end of the fifth day. Statistical analysis used analysis of variance (ANOVA), testing at a 5% significance level. In the violet-blue light irradiated groups, there was a significant reduction (p < 0.05) of bacterial viability (CFU) of S. mutans with TSB and TSBS. Violet-blue light irradiation resulted in the reduction of ∆F and L of the dentinal surface with TSBS. These results indicate that violet-blue light has the capacity to reduce S. mutans cell numbers

    Bottom-up perspective:The role of roots and rhizosphere in climate change adaptation and mitigation in agroecosystems

    Get PDF
    Climate change is happening and causing severe impact on the sustainability of agroecosystems. We argue that many of the abiotic stresses associated with climate change will be most acutely perceived by the plant at the root-soil interface and are likely to be mitigated at this globally important interface. In this review we will focus on the direct impacts of climate change, temperature, drought and pCO2, on roots and rhizospheres. We consider which belowground traits will be impacted and discuss the potential for monitoring and quantifying these traits for modelling and breeding programs. We discuss the specific impacts of combined stress and the role of the microbial communities populating the root-soil interface, collectively referred to as the rhizosphere microbiota, in interactions with roots under stress and discuss the plastic responses to stress as a way of adapting plants to climate change. We then go on to discuss the role that modelling has in understanding this complex problem and suggest the best belowground targets for adaptation and mitigation to climate change. We finish by considering where the main uncertainties lie, providing perspective on where research is needed. This review therefore focuses on the potential of roots and rhizosphere to adapt to the climate change effects and to mitigate their negative impacts on plant growth, crop productivity, soil health and ecosystem services

    Aptamer conjugated silver nanoparticles for the detection of interleukin 6

    Get PDF
    The controlled assembly of plasmonic nanoparticles by a molecular binding event has emerged as a simple yet sensitive methodology for protein detection. Metallic nanoparticles (NPs) coated with functionalized aptamers can be utilized as biosensors by monitoring changes in particle optical properties, such as the LSPR shift and enhancement of the SERS spectra, in the presence of a target protein. Herein we test this method using two modified aptamers selected for the protein biomarker interleukin 6, an indicator of the dengue fever virus and other diseases including certain types of cancers, diabetes, and even arthritis. IL6 works by inducing an immunological response within the body that can be either anti-inflammatory or pro-inflammatory. The results show that the average hydrodynamic diameter of the NPs as measured by Dynamic Light Scattering was ∼42 nm. After conjugation of the aptamers, the peak absorbance of the AgNPs shifted from 404 to 408 nm indicating a surface modification of the NPs due to the presence of the aptamer. Lastly, preliminary results were obtained showing an increase in SERS intensity occurs when the IL-6 protein was introduced to the conjugate solution but the assay will still need to be optimized in order for it to be able to monitor varying concentration changes within and across the desired range

    GASP IV: A muse view of extreme ram-pressure stripping in the plane of the sky: the case of jellyfish galaxy JO204

    Get PDF
    In the context of the GAs Stripping Phenomena in galaxies with Muse (GASP) survey, we present the characterization of JO204, a jellyfish galaxy in A957, a relatively low-mass cluster with M=4.4×1014MM=4.4 \times10^{14}M_\odot. This galaxy shows a tail of ionized gas that extends up to 30 kpc from the main body in the opposite direction of the cluster center. No gas emission is detected in the galaxy outer disk, suggesting that gas stripping is proceeding outside-in. The stellar component is distributed as a regular disk galaxy; the stellar kinematics shows a symmetric rotation curve with a maximum radial velocity of 200km/s out to 20 kpc from the galaxy center. The radial velocity of the gas component in the central part of the disk follows the distribution of the stellar component; the gas kinematics in the tail retains the rotation of the galaxy disk, indicating that JO204 is moving at high speed in the intracluster medium. Both the emission and radial velocity maps of the gas and stellar components indicate ram-pressure as the most likely primary mechanism for gas stripping, as expected given that JO204 is close to the cluster center and it is likely at the first infall in the cluster. The spatially resolved star formation history of JO204 provides evidence that the onset of ram-pressure stripping occurred in the last 500 Myr, quenching the star formation activity in the outer disk, where the gas has been already completely stripped. Our conclusions are supported by a set of hydrodynamic simulations.Comment: accepted for publication in Ap

    Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis

    Get PDF
    Governments have implemented social distancing measures to address the ongoing COVID-19 pandemic. The measures include instructions that individuals maintain social distance when in public, school closures, limitations on gatherings and business operations, and instructions to remain at home. Social distancing may have an impact on the volume and distribution of crime. Crimes such as residential burglary may decrease as a byproduct of increased guardianship over personal space and property. Crimes such as domestic violence may increase because of extended periods of contact between potential offenders and victims. Understanding the impact of social distancing on crime is critical for ensuring the safety of police and government capacity to deal with the evolving crisis. Understanding how social distancing policies impact crime may also provide insights into whether people are complying with public health measures. Examination of the most recently available data from both Los Angeles, CA, and Indianapolis, IN, shows that social distancing has had a statistically significant impact on a few specific crime types. However, the overall effect is notably less than might be expected given the scale of the disruption to social and economic life
    corecore