7 research outputs found

    Pervasive selection against microRNA target sites in human populations

    Get PDF
    MicroRNA target sites are often conserved during evolution and purifying selection to maintain such sites is expected. On the other hand, comparative analyses identified a paucity of microRNA target sites in coexpressed transcripts, and novel target sites can potentially be deleterious. We proposed that selection against novel target sites pervasive. The analysis of derived allele frequencies revealed that, when the derived allele is a target site, the proportion of nontarget sites is higher than expected, particularly for highly expressed microRNAs. Thus, new alleles generating novel microRNA target sites can be deleterious and selected against. When we analyzed ancestral target sites, the derived (nontarget) allele frequency does not show statistical support for microRNA target allele conservation. We investigated the joint effects of microRNA conservation and expression and found that selection against microRNA target sites depends mostly on the expression level of the microRNA. We identified microRNA target sites with relatively high levels of population differentiation. However, when we analyze separately target sites in which the target allele is ancestral to the population, the proportion of single-nucleotide polymorphisms with high Fst significantly increases. These findings support that population differentiation is more likely in target sites that are lost than in the gain of new target sites. Our results indicate that selection against novel microRNA target sites is prevalent and, although individual sites may have a weak selective pressure, the overall effect across untranslated regions is not negligible and should be accounted when studying the evolution of genomic sequences

    The Impact of Population Variation in the Analysis of microRNA Target Sites

    Get PDF
    The impact of population variation in the analysis of regulatory interactions is an underdeveloped area. MicroRNA target recognition occurs via pairwise complementarity. Consequently, a number of computational prediction tools have been developed to identify potential target sites that can be further validated experimentally. However, as microRNA target predictions are done mostly considering a reference genome sequence, target sites showing variation among populations are neglected. Here, we studied the variation at microRNA target sites in human populations and quantified their impact in microRNA target prediction. We found that African populations carry a significant number of potential microRNA target sites that are not detectable in the current human reference genome sequence. Some of these targets are conserved in primates and only lost in Out-of-Africa populations. Indeed, we identified experimentally validated microRNA/transcript interactions that are not detected in standard microRNA target prediction programs, yet they have segregating target alleles abundant in non-European populations. In conclusion, we show that ignoring population diversity may leave out regulatory elements essential to understand disease and gene expression, particularly neglecting populations of African origin

    PopTargs: a database for studying population evolutionary genetics of human microRNA target sites

    Get PDF
    There is an increasing interest in the study of polymorphic variants at gene regulatory motifs, including microRNA target sites. Understanding the effects of selective forces at specific microRNA target sites, together with other factors like expression levels or evolutionary conservation, requires the joint study of multiple datasets. We have compiled information from multiple sources and compared it with predicted microRNA target sites to build a comprehensive database for the study of microRNA targets in human populations. PopTargs is a web-based tool that allows the easy extraction of multiple datasets and the joint analyses of them, including allele frequencies, ancestral status, population differentiation statistics and site conservation. The user can also compare the allele frequency spectrum between two groups of target sites and conveniently produce plots. The database can be easily expanded as new data becomes available and the raw database as well as code for creating new custom-made databases is available for downloading. We also describe a few illustrative examples

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore