180 research outputs found
Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens?
The first step towards genetic selection for host tolerance to infectious pathogens: Obtaining the tolerance phenotype through group estimates
Reliable phenotypes are paramount for meaningful quantification of genetic variation and for estimating individual breeding values on which genetic selection is based. In this paper we assert that genetic improvement of host tolerance to disease, although desirable, may be first of all handicapped by the ability to obtain unbiased tolerance estimates at a phenotypic level. In contrast to resistance, which can be inferred by appropriate measures of within host pathogen burden, tolerance is more difficult to quantify as it refers to change in performance with respect to changes in pathogen burden. For this reason, tolerance phenotypes have only been specified at the level of a group of individuals, where such phenotypes can be estimated using regression analysis. However, few studies have raised the potential bias in these estimates resulting from confounding effects between resistance and tolerance. Using a simulation approach, we demonstrate (i) how these group tolerance estimates depend on within group variation and co-variation in resistance, tolerance and vigour (performance in a pathogen free environment); and (ii) how tolerance estimates are affected by changes in pathogen virulence over the time course of infection and by the timing of measurements. We found that in order to obtain reliable group tolerance estimates, it is important to account for individual variation in vigour, if present, and that all individuals are at the same stage of infection when measurements are taken. The latter requirement makes estimation of tolerance based on cross-sectional field data challenging, as individuals become infected at different time points and the individual onset of infection is unknown. Repeated individual measurements of within host pathogen burden and performance would not only be valuable for inferring the infection status of individuals in field conditions but would also provide tolerance estimates that capture the entire time course of infection
Novel methods for quantifying individual host response to infectious pathogens for genetic analyses
Here we propose two novel approaches for describing and quantifying the response of individual hosts to pathogen challenge in terms of infection severity and impact on host performance. The first approach is a direct extension of the methodology for estimating group tolerance – the change in performance with respect to changes in pathogen burden in a host population – to the level of individuals. The second approach aims to capturethe dynamic aspects of individual resistance and tolerance over the entire time course of infections. In contrast to the first approach, which provides a means to disentangle host resistance from tolerance, the second approach considers the combined effects of host resistance and tolerance. Both approaches provide new individual phenotypes for subsequent genetic analyses and come with specific data requirements. Consideration of individual tolerance also highlights some of the assumptions hidden within the concept of group tolerance, indicating where care needs to be taken in trait definition and measurement
Optimal experimental designs for estimating genetic and non-genetic effects underlying infectious disease transmission
BACKGROUND: The spread of infectious diseases in populations is controlled by the susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection), and recoverability (propensity to recover/die) of individuals. Estimating genetic risk factors for these three underlying host epidemiological traits can help reduce disease spread through genetic control strategies. Previous studies have identified important ‘disease resistance single nucleotide polymorphisms (SNPs)’, but how these affect the underlying traits is an unresolved question. Recent advances in computational statistics make it now possible to estimate the effects of SNPs on host traits from epidemic data (e.g. infection and/or recovery times of individuals or diagnostic test results). However, little is known about how to effectively design disease transmission experiments or field studies to maximise the precision with which these effects can be estimated. RESULTS: In this paper, we develop and validate analytical expressions for the precision of the estimates of SNP effects on the three above host traits for a disease transmission experiment with one or more non-interacting contact groups. Maximising these expressions leads to three distinct ‘experimental’ designs, each specifying a different set of ideal SNP genotype compositions across groups: (a) appropriate for a single contact-group, (b) a multi-group design termed “pure”, and (c) a multi-group design termed “mixed”, where ‘pure’ and ‘mixed’ refer to groupings that consist of individuals with uniformly the same or different SNP genotypes, respectively. Precision estimates for susceptibility and recoverability were found to be less sensitive to the experimental design than estimates for infectivity. Whereas the analytical expressions suggest that the multi-group pure and mixed designs estimate SNP effects with similar precision, the mixed design is preferred because it uses information from naturally-occurring rather than artificial infections. The same design principles apply to estimates of the epidemiological impact of other categorical fixed effects, such as breed, line, family, sex, or vaccination status. Estimation of SNP effect precisions from a given experimental setup is implemented in an online software tool SIRE-PC. CONCLUSIONS: Methodology was developed to aid the design of disease transmission experiments for estimating the effect of individual SNPs and other categorical variables that underlie host susceptibility, infectivity and recoverability. Designs that maximize the precision of estimates were derived. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12711-022-00747-1
Uses and Implications of Field Disease Data for Livestock Genomic and Genetics Studies
This paper identifies issues associated with field disease data and their implications on the interpretation of estimated genetic parameters and experimental designs. The main focus is on concepts relating to the impacts of diagnostic test properties and exposure to infection, and how exposure to infection is intricately related to within-herd epidemic dynamics. The following are raised challenges: (i) to more fully understand and describe the dynamic impacts of disease epidemics on genetic interpretations; (ii) to develop statistical methods to jointly estimate epidemiological and genetic parameters from complex epidemiological data; (iii) to develop and explore optimal experimental designs for case-control studies, exploiting field disease data. Solving these problems would add insight to both disease genetic and epidemiological studies, as well as enabling us to better select animals for increased disease resistance
Exploring the assumptions underlying genetic variation in host nematode resistance (Open Access publication)
The wide range of genetic parameter estimates for production traits and nematode resistance in sheep obtained from field studies gives rise to much speculation. Using a mathematical model describing host – parasite interactions in a genetically heterogeneous lamb population, we investigated the consequence of: (i) genetic relationships between underlying growth and immunological traits on estimated genetic parameters for performance and nematode resistance, and (ii) alterations in resource allocation on these parameter estimates. Altering genetic correlations between underlying growth and immunological traits had large impacts on estimated genetic parameters for production and resistance traits. Extreme parameter values observed from field studies could only be reproduced by assuming genetic relationships between the underlying input traits. Altering preferences in the resource allocation had less pronounced effects on the genetic parameters for the same traits. Effects were stronger when allocation shifted towards growth, in which case worm burden and faecal egg counts increased and genetic correlations between these resistance traits and body weight became stronger. Our study has implications for the biological interpretation of field data, and for the prediction of selection response from breeding for nematode resistance. It demonstrates the profound impact that moderate levels of pleiotropy and linkage may have on observed genetic parameters, and hence on outcomes of selection for nematode resistance
Indirect Genetic Effects and the Spread of Infectious Disease: Are We Capturing the Full Heritable Variation Underlying Disease Prevalence?
Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease prevalence
Estimating individuals’ genetic and non-genetic effects underlying infectious disease transmission from temporal epidemic data
Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for "Susceptibility, Infectivity and Recoverability Estimation"), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals' infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission
Implications of Host Genetic Variation on the Risk and Prevalence of Infectious Diseases Transmitted Through the Environment
Previous studies have shown that host genetic heterogeneity in the response to infectious challenge can affect the emergence risk and the severity of diseases transmitted through direct contact between individuals. However, there is substantial uncertainty about the degree and direction of influence owing to different definitions of genetic variation, most of which are not in line with the current understanding of the genetic architecture of disease traits. Also, the relevance of previous results for diseases transmitted through environmental sources is unclear. In this article a compartmental genetic–epidemiological model was developed to quantify the impact of host genetic diversity on epidemiological characteristics of diseases transmitted through a contaminated environment. The model was parameterized for footrot in sheep. Genetic variation was defined through continuous distributions with varying shape and degree of dispersion for different disease traits. The model predicts a strong impact of genetic heterogeneity on the disease risk and its progression and severity, as well as on observable host phenotypes, when dispersion in key epidemiological parameters is high. The impact of host variation depends on the disease trait for which variation occurs and on environmental conditions affecting pathogen survival. In particular, compared to homogeneous populations with the same average susceptibility, disease risk and severity are substantially higher in populations containing a large proportion of highly susceptible individuals, and the differences are strongest when environmental contamination is low. The implications of our results for the recording and analysis of disease data and for predicting response to selection are discussed
- …
