12,711 research outputs found
Design, Engineering, and Experimental Analysis of a Simulated Annealing Approach to the Post-Enrolment Course Timetabling Problem
The post-enrolment course timetabling (PE-CTT) is one of the most studied
timetabling problems, for which many instances and results are available. In
this work we design a metaheuristic approach based on Simulated Annealing to
solve the PE-CTT. We consider all the different variants of the problem that
have been proposed in the literature and we perform a comprehensive
experimental analysis on all the public instances available. The outcome is
that our solver, properly engineered and tuned, performs very well on all
cases, providing the new best known results on many instances and
state-of-the-art values for the others
Unified Fock space representation of fractional quantum Hall states
Many bosonic (fermionic) fractional quantum Hall states, such as Laughlin,
Moore-Read and Read-Rezayi wavefunctions, belong to a special class of
orthogonal polynomials: the Jack polynomials (times a Vandermonde determinant).
This fundamental observation allows to point out two different recurrence
relations for the coefficients of the permanent (Slater) decomposition of the
bosonic (fermionic) states. Here we provide an explicit Fock space
representation for these wavefunctions by introducing a two-body squeezing
operator which represents them as a Jastrow operator applied to reference
states, which are in general simple periodic one dimensional patterns.
Remarkably, this operator representation is the same for bosons and fermions,
and the different nature of the two recurrence relations is an outcome of
particle statistics.Comment: 10 pages, 3 figure
Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem
We consider the university course timetabling problem, which is one of the
most studied problems in educational timetabling. In particular, we focus our
attention on the formulation known as the curriculum-based course timetabling
problem, which has been tackled by many researchers and for which there are
many available benchmarks.
The contribution of this paper is twofold. First, we propose an effective and
robust single-stage simulated annealing method for solving the problem.
Secondly, we design and apply an extensive and statistically-principled
methodology for the parameter tuning procedure. The outcome of this analysis is
a methodology for modeling the relationship between search method parameters
and instance features that allows us to set the parameters for unseen instances
on the basis of a simple inspection of the instance itself. Using this
methodology, our algorithm, despite its apparent simplicity, has been able to
achieve high quality results on a set of popular benchmarks.
A final contribution of the paper is a novel set of real-world instances,
which could be used as a benchmark for future comparison
Selberg integrals in 1D random Euclidean optimization problems
We consider a set of Euclidean optimization problems in one dimension, where
the cost function associated to the couple of points and is the
Euclidean distance between them to an arbitrary power , and the points
are chosen at random with flat measure. We derive the exact average cost for
the random assignment problem, for any number of points, by using Selberg's
integrals. Some variants of these integrals allows to derive also the exact
average cost for the bipartite travelling salesman problem.Comment: 9 pages, 2 figure
Blue Gravity Waves from BICEP2 ?
We present new constraints on the spectral index n_T of tensor fluctuations
from the recent data obtained by the BICEP2 experiment. We found that the
BICEP2 data alone slightly prefers a positive, "blue", spectral index with
n_T=1.36\pm0.83 at 68 % c.l.. However, when a TT prior on the tensor amplitude
coming from temperature anisotropy measurements is assumed we get
n_T=1.67\pm0.53 at 68 % c.l., ruling out a scale invariant spectrum at
more than three standard deviations. These results are at odds with current
bounds on the tensor spectral index coming from pulsar timing, Big Bang
Nucleosynthesis, and direct measurements from the LIGO experiment. Considering
only the possibility of a "red", n_T<0 spectral index we obtain the lower limit
n_T > -0.76 at 68 % c.l. (n_T>-0.09 when a TT prior is included).Comment: 3 Pages, 4 Figure
Comparison between 1-D and grey-box models of a SOFC
Solid Oxide Fuel Cells (SOFCs) have shown unique performance in terms of greater electrical efficiency and thermochemical integrity with the power systems compared to gas turbines and internal combustion engines. Nonetheless, simple and reliable models still must be defined. In this paper, a comparison between a grey-box model and a 1-D model of a SOFC is performed to understand the impact of the heat transfer inside the cell on the internal temperature distribution of the solid electrolyte. Hence, a significant internal temperature peak of the solid electrolyte is observed for a known difference between anode and cathode inlet temperatures. Indeed, it highlights the difference between the 1-D model and the grey-box model regarding the thermal conditioning of the SOFC. Therefore, the results of this study can be used to investigate the reliability of the thermal results of box models in system-level simulations
Phenotypic characterization of human prostatic stromal cells in primary cultures derived from human tissue samples
Emerging evidence has shown that the tumor microenvironment plays a crucial role in prostate cancer (PCa) development and progression. However, the mechanism(s) through which stromal cells regulate epithelial cells and the differences among prostatic stromal cells of different histological/pathological origin in PCa progression remain unclear. Therefore, it is necessary to characterize the stromal cell populations present in benign prostatic hyperplasia (BPH) and PCa. To this end, we used cultures from stromal cells obtained from BPH-derived (15 cases) and PCa-derived (30 cases) primary cultures. In culture, stromal cells are a mixture of fibroblasts, myofibroblasts (MFs) and muscle cells. Fibroblasts are characterized for the expression of vimentin, MFs for the co-expression of α-smooth muscle actin (α-SMA) and vimentin, whereas muscle cells for the expression of α-SMA and desmin. Fibroblasts were present in large amounts in the BPH-compared to the PCa-derived cultures, whereas MFs were more representative of PCa-as opposed to BPH-derived cultures. Some α-SMA-positive cells retained the expression of basal cytokeratin K14. This population was defined as myoepithelial cells and was associated with senescent cultures. The percentage of MFs was higher in high-grade compared to moderate-and low-grade PCa-derived cultures, whereas the number of myoepithelial cells was lower in high-grade compared to moderate-and low-grade PCa-derived cultures. In addition, we analyzed the expression of p75NTR, as well as the expression of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors of MMPs (TIMPs). p75NTR expression was elevated in the stromal cultures derived from PCa compared to those derived from BPH and in cultures derived from cases with Gleason scores.7 compared to those derived from cases with Gleason scores <7, as well as in cultures with a high concentration of MFs compared to those with a high concentration of fibroblasts. MMP-2 was secreted by all primary cultures, whereas MMP-9 secretion was observed only in some PCa-derived stromal cells, when the percentage of MFs was significantly higher compared to BPH-derived cultures. TIMP1, TIMP2 and TIMP3 were secreted in elevated amounts in the BPH-compared to the PCa-derived stromal cultures, suggesting the differential regulation of extracellular matrix (ECM) degradation. When we used 22rv1 and PC3 PCa xenograft models for the isolation and characterization of murine cancer-associated fibroblasts (CAFs) we noted that the angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, vimentin, tenascin, calponin, desmin and Masson's trichrome. In conclusion, MF stromal cells from PCa participate in the progression and metastasis of PCa, modualting inflammation, angiogenesis and epithelial cancer cell proliferation
Simple Dynamics for Plurality Consensus
We study a \emph{Plurality-Consensus} process in which each of anonymous
agents of a communication network initially supports an opinion (a color chosen
from a finite set ). Then, in every (synchronous) round, each agent can
revise his color according to the opinions currently held by a random sample of
his neighbors. It is assumed that the initial color configuration exhibits a
sufficiently large \emph{bias} towards a fixed plurality color, that is,
the number of nodes supporting the plurality color exceeds the number of nodes
supporting any other color by additional nodes. The goal is having the
process to converge to the \emph{stable} configuration in which all nodes
support the initial plurality. We consider a basic model in which the network
is a clique and the update rule (called here the \emph{3-majority dynamics}) of
the process is the following: each agent looks at the colors of three random
neighbors and then applies the majority rule (breaking ties uniformly).
We prove that the process converges in time with high probability, provided that .
We then prove that our upper bound above is tight as long as . This fact implies an exponential time-gap between the
plurality-consensus process and the \emph{median} process studied by Doerr et
al. in [ACM SPAA'11].
A natural question is whether looking at more (than three) random neighbors
can significantly speed up the process. We provide a negative answer to this
question: In particular, we show that samples of polylogarithmic size can speed
up the process by a polylogarithmic factor only.Comment: Preprint of journal versio
Near-field electrospinning of conjugated polymer light-emitting nanofibers
The authors report on the realization of ordered arrays of light-emitting
conjugated polymer nanofibers by near-field electrospinning. The fibers, made
by poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of
few hundreds of nanometers and emission peaked at 560 nm. The observed
blue-shift compared to the emission from reference films is attributed to
different polymer packing in the nanostructures. Optical confinement in the
fibers is also analyzed through self-waveguided emission. These results open
interesting perspectives for realizing complex and ordered architectures by
light-emitting nanofibers, such as photonic circuits, and for the precise
positioning and integration of conjugated polymer fibers into light-emitting
devices.Comment: 11 pages, 6 figures Nanoscale, 201
- …
