14,656 research outputs found

    Peer Review Certifies Quality and Innovation in Clinical Pharmacology & Therapeutics.

    Get PDF
    Clinical Pharmacology & Therapeutics (CPT) is an established voice of the discipline, a trusted source of new knowledge showcasing discovery, translation, and application of novel therapeutic paradigms to advance the management of patients and populations. Identifying, evaluating, prioritizing, and disseminating the best science along the discovery-development-regulatory-utilization continuum are responsibilities shared through peer review. To enhance the uniformity of this essential component of quality assurance and innovation, and maximize the value of the journal and its contents to authors, reviewers, and the readership, we review key concepts concerning peer review as it specifically relates to CPT

    Thin electron-scale layers at the magnetopause

    Get PDF
    We use data from the four Cluster satellites to examine the microphysics of a thin electron-scale layer discovered on the magnetospheric side of the magnetopause. Here the ion and electron motions are decoupled in a layer about 20 km (a few electron scales) wide, including currents and strong electric fields. In this layer the electrons are E x B drifting with the ions as a background, and the region can be described by Hall MHD physics. A unique identification of the source of the thin layer is not possible, but our observations are consistent with recent simulations showing thin layers associated with the separatrix extending far away from a reconnection diffusion region

    The C23A system, an exmaple of quantitative control of plant growth associated with a data base

    Get PDF
    The architecture of the C23A (Chambers de Culture Automatique en Atmosphere Artificielles) system for the controlled study of plant physiology is described. A modular plant growth chambers and associated instruments (I.R. CO2 analyser, Mass spectrometer and Chemical analyser); network of frontal processors controlling this apparatus; a central computer for the periodic control and the multiplex work of processors; and a network of terminal computers able to ask the data base for data processing and modeling are discussed. Examples of present results are given. A growth curve analysis study of CO2 and O2 gas exchanges of shoots and roots, and daily evolution of algal photosynthesis and of the pools of dissolved CO2 in sea water are discussed

    Anderson localization on the Falicov-Kimball model with Coulomb disorder

    Full text link
    The role of Coulomb disorder is analysed in the Anderson-Falicov-Kimball model. Phase diagrams of correlated and disordered electron systems are calculated within dynamical mean-field theory applied to the Bethe lattice, in which metal-insulator transitions led by structural and Coulomb disorders and correlation can be identified. Metallic, Mott insulator, and Anderson insulator phases, as well as the crossover between them are studied in this perspective. We show that Coulomb disorder has a relevant role in the phase-transition behavior as the system is led towards the insulator regime

    Correlated electrons systems on the Apollonian network

    Get PDF
    Strongly correlated electrons on an Apollonian network are studied using the Hubbard model. Ground-state and thermodynamic properties, including specific heat, magnetic susceptibility, spin-spin correlation function, double occupancy and one-electron transfer, are evaluated applying direct diagonalization and quantum Monte Carlo. The results support several types of magnetic behavior. In the strong-coupling limit, the quantum anisotropic spin 1/2 Heisenberg model is used and the phase diagram is discussed using the renormalization group method. For ferromagnetic coupling, we always observe the existence of long-range order. For antiferromagnetic coupling, we find a paramagnetic phase for all finite temperatures.Comment: 7 pages, 8 figure

    Quantum-state transfer in staggered coupled-cavity arrays

    Get PDF
    We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of inter-cavity couplings, a pair of field normal modes each bi-localized at the two array ends arise. A rich structure of dynamical regimes can hence be addressed depending on which resonance condition between the atom and field modes is set. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the array into coupled modules of smaller length, the QST time can be substantially shortened without significantly affecting the fidelity.Comment: 12 pages, 8 figure
    • …
    corecore