30 research outputs found

    A karbonilstressz szerepe a diabetes szövƑdmĂ©nyeinek kialakulĂĄsĂĄban

    Get PDF
    The relationship between the potentially developing complications of the 451 million people affected by diabetes and hyperglycaemia can be based on the enhanced generation of advanced glycation endproducts and the more intensive oxidative and carbonyl stress. Advanced glycation endproducts generated partly due to carbonyl stress play an important role in the pathogenesis of diabetic complications such as elevated arterial thickness, vascular permeability, enhanced angiogenesis or the more rigid vessels induced nephropathy, neuropathy, retinopathy. Furthermore, the elevated thrombocyte aggregation, the reduced fibrinolysis induced elevated coagulation, and the atherosclerosis or the mitochondrial dysfunction are important as well. The most potent target of both the non-oxidative and oxidative generation of advanced glycation endproducts can be the scavenging of alpha,beta-unsaturated aldehydes. Although, aminoguanidine, the prototype of scavenger molecules, showed protection in different animal models, it failed in the human clinical studies. Finally, the clinical studies were terminated almost 20 years ago. The endogen dipeptide L-carnosine was also expected to mitigate the complications due to carbonyl stress. However, its clinical significance was limited by the serum carnosinases and by the consequent low serum stability and bioavailability. The carnosinase resistance of the molecule can be achieved by the change of the carboxyl group of the molecule to hydroxyl group. At the same time, the biosafety and the carbonyl stress scavenging activity of the molecule could be preserved. Although clinical studies could not be performed in the last six months, on the basis of the in vitro and in vivo results, carnosinole seems to be a promising compound to mitigate and prevent the diabetic complications. Thus it is worth to the attention of the clinicians

    ECONOMIC IMPACTS OF SPORTS EVENTS

    Get PDF
    A number of researches and economic analyses deal with the economic effects of the various sports events. These researches try to find out if it is profitable to organise a sports event or why it is worth, when and how the invested capital returns for the host country. Mainly for hosting mayor international sports events like the Olympic Games or the World Championships and continental competitions (e.g. EC) do the countries rival guessing the chances and analyzing the expected economic impacts and the return on investment. However, it is difficult to forecast the recovery effects or to quantify them considering the various locations. The Olympics will result in economic benefits for the host country. In the preparatory phase, the economy-stimulating effect, the additional demand for tourism and the multiple effects of tourism are the most extensive. Hosting such an event will structure the economy even after the event by increasing the effect of image thus attracting foreign capital

    Value propositions for improving the competitiveness of short food supply chains built on technological and non-technological innovations

    Get PDF
    There has been growing consumer demand for the products and services of the short food supply chains (SFSCs) in recent times. A procedure was developed to identify the technological and technological innovations that can improve the performance and competitiveness of the SFSCs. The needs of the SFSCs for innovative solutions were collected by interviewing 18 SFSCs from 9 countries. An inventory was prepared to contain 136 technological and non-technological innovations, meeting these needs. The innovations were collected from the good practices of the 18 SFSCs, experiences of the project partners and state of the art. The success factors and bottlenecks of each short food supply chain operation and their current value propositions were identified. From the inventory, those innovations were selected for each short food chain case study which can be applied to eliminate or reduce the bottlenecks or enhance the success factors leading to new, upgraded value propositions with increased added value for the consumers. The new, upgraded value propositions can serve as a starting point for developing a strategy for improving the competitiveness of a short food chain organisation through the application of innovations

    Photocycle alteration and increased enzymatic activity in genetically modified photoactivated adenylate cyclase OaPAC

    Get PDF
    Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be “silent” in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated

    Development and In-Depth Characterization of Bacteria Repellent and Bacteria Adhesive Antibody-Coated Surfaces Using Optical Waveguide Biosensing

    Get PDF
    Bacteria repellent surfaces and antibody-based coatings for bacterial assays have shown a growing demand in the field of biosensors, and have crucial importance in the design of biomedical devices. However, in-depth investigations and comparisons of possible solutions are still missing. The optical waveguide lightmode spectroscopy (OWLS) technique offers label-free, non-invasive, in situ characterization of protein and bacterial adsorption. Moreover, it has excellent flexibility for testing various surface coatings. Here, we describe an OWLS-based method supporting the development of bacteria repellent surfaces and characterize the layer structures and affinities of different antibody-based coatings for bacterial assays. In order to test nonspecific binding blocking agents against bacteria, OWLS chips were coated with bovine serum albumin (BSA), I-block, PAcrAM-g-(PMOXA, NH(2), Si), (PAcrAM-P) and PLL-g-PEG (PP) (with different coating temperatures), and subsequent Escherichia coli adhesion was monitored. We found that the best performing blocking agents could inhibit bacterial adhesion from samples with bacteria concentrations of up to 10(7) cells/mL. Various immobilization methods were applied to graft a wide range of selected antibodies onto the biosensor’s surface. Simple physisorption, Mix&Go (AnteoBind) (MG) films, covalently immobilized protein A and avidin–biotin based surface chemistries were all fabricated and tested. The surface adsorbed mass densities of deposited antibodies were determined, and the biosensor;s kinetic data were evaluated to divine the possible orientations of the bacteria-capturing antibodies and determine the rate constants and footprints of the binding events. The development of affinity layers was supported by enzyme-linked immunosorbent assay (ELISA) measurements in order to test the bacteria binding capabilities of the antibodies. The best performance in the biosensor measurements was achieved by employing a polyclonal antibody in combination with protein A-based immobilization and PAcrAM-P blocking of nonspecific binding. Using this setting, a surface sensitivity of 70 cells/mm(2) was demonstrated

    Kleefstra syndrome in Hungarian patients: additional symptoms besides the classic phenotype

    Get PDF
    BACKGROUND: Kleefstra syndrome is a rare genetic disorder, with core phenotypic features encompassing developmental delay/intellectual disability, characteristic facial features - brachy(micro)cephaly, unusual shaped eyebrows, flat face with hypertelorism, short nose with anteverted nostrils, thickened lower lip, carpmouth with macroglossia - and childhood hypotonia. Some additional symptoms are observed in different percentage of the patients. Epilepsy is common symptom as well. The underlying cause of the syndrome is a submicroscopic deletion in the chromosomal region 9q34.3 or disruption of the euchromatin histone methyl transferase 1. CASE PRESENTATION: We describe two Hungarian Kleefstra syndrome patients, one with the classic phenotype of the syndrome, the diagnosis was confirmed by subtelomeric FISH. Meanwhile in our second patient beside the classic phenotype a new symptom - abnormal antiepileptic drug metabolic response - could be observed. Subtelomere FISH confirmed the 9q34.3 terminal deletion. Because of the abnormal drug metabolism in our second patient, we performed array CGH analysis as well searching for other rearrangements. Array CGH analysis indicated a large - 1.211 Mb -, deletion only in the 9q subtelomeric region with breakpoints ch9:139,641,471-140,852,911. CONCLUSIONS: This is the first report on Kleefstra syndrome in patients describing a classical and a complex phenotype involving altered drug metabolism. KEYWORDS: 9q subtelomeric deletion syndrome; Drug metabolism; Epilepsy; Kleefstra syndrom

    Partial tetrasomy of the proximal long arm of chromosome 15 in two patients : the significance of the gene dosage in terms of phenotype

    Get PDF
    BACKGROUND: Large amounts of low copy number repeats in the 15q11.2q13.3 chromosomal region increase the possibility of misalignments and unequal crossover during meiosis in this region, leading to deletions, duplications, triplications and supernumerary chromosomes. Most of the reported cases with epilepsy, autism and Prader-Willi/Angelman syndrome are in association with rearrangements of the proximal long arm of chromosome 15. RESULTS: Here we report the first two unrelated Hungarian patients with the same epileptic and dysmorphic features, who were investigated by array comparative genomic hybridization (array CGH). By G-banded karyotype followed by FISH and array CGH we could detect partial tetrasomy of the 15q11.2q13.3 chromosomal region, supporting proximal 15q duplication syndrome. Findings of the array CGH gave fully explanation of the phenotypic features of these patients, including epileptic seizures, delayed development, hyperactivity and craniofacial dysmorphic signs. Besides the described features of isodicentric (15) (idic(15)) syndrome Patient 1. suffered from bigeminic extrasystoles and had postnatal growth retardation, which had been published only in a few articles. CONCLUSIONS: Dosage effect of some genes in the concerned genomic region is known, but several genes have no evidence to have dosage dependence. Our results expanded the previous literature data. We assume dosage dependence in the case of CHRNA7 and OTUD7A, which might be involved in growth regulation. On the other hand increased dosage of the KLF13 gene seems to have no direct causal relationship with heart morphology. The genomic environment of the affected genes may be responsible for the observed phenotype. KEYWORDS: 15q duplication syndrome; Array CGH; Dysmorphism; Epilepsy; Supernumerary chromosom
    corecore