1,135 research outputs found

    Collectivity in the optical response of small metal clusters

    Get PDF
    The question whether the linear absorption spectra of metal clusters can be interpreted as density oscillations (collective ``plasmons'') or can only be understood as transitions between distinct molecular states is still a matter of debate for clusters with only a few electrons. We calculate the photoabsorption spectra of Na2 and Na5+ comparing two different methods: quantum fluid-dynamics and time-dependent density functional theory. The changes in the electronic structure associated with particular excitations are visualized in ``snapshots'' via transition densities. Our analysis shows that even for the smallest clusters, the observed excitations can be interpreted as intuitively understandable density oscillations. For Na5+, the importance of self-interaction corrections to the adiabatic local density approximation is demonstrated.Comment: 6 pages, 3 figures. To appear in special issue of Applied Physics B, "Optical properties of Nanoparticles

    Dynamics of metal clusters in rare gas clusters

    Full text link
    We investigate the dynamics of Na clusters embedded in Ar matrices. We use a hierarchical approach, accounting microscopically for the cluster's degrees of freedom and more coarsely for the matrix. The dynamical polarizability of the Ar atoms and the strong Pauli-repulsion exerted by the Ar-electrons are taken into account. We discuss the impact of the matrix on the cluster gross properties and on its optical response. We then consider a realistic case of irradiation by a moderately intense laser and discuss the impact of the matrix on the hindrance of the explosion, as well as a possible pump probe scenario for analyzing dynamical responses.Comment: Proceedings of the 30th International Workshop on Condensed Matter Theories, Dresden, June 05 - 10, 2006, World Scientific. 3 figure

    Contrasting levels of fructose and urea added to an annual ryegrass based diet: effects on microbial protein synthesis, nutrient digestibility and fermentation parameters in continuous culture fermenters

    Get PDF
    El objetivo de este experimento fue evaluar los efectos de la adición de fructosa cristalina y urea a una dieta basada en raigrás anual sobre la síntesis de proteína microbiana, la fermentación y la digestibilidad de los nutrientes, usando fermentadores de flujo continuo. Se usaron seis fermentadores de flujo continuo en un arreglo factorial 3x2, con tres niveles de hidratos de carbono solubles (WSC) obtenidos por la adición de fructosa cristalina (21, 24 y 27 g.100 g MS1; LWSC, MWSC y HWSC, respectivamente) y dos niveles de proteína bruta (CP) obtenidos por la adición de urea (14,6 y 18,6 g.100 g MS1, LCP y HCP, respectivamente). Se corrieron sucesivamente cuatro períodos de 10d (7d para adaptación, 3d para muestreo). La síntesis de proteína microbiana se estimó por la relación purinas: N. Hubo una interacción significativa entre niveles de WSC y CP para síntesis de proteína microbiana (P<0,001). El nivel de WSC no afectó el pH, la concentración de amonio ni la concentración de ácidos grasos volátiles (VFA). Niveles más altos de CP aumentaron la proporción de ácido acético y tendieron a aumentar la relación acético propiónico, mientras que el nivel de WSC no afectó las proporciones de VFA. Los tratamientos no afectaron la digestibilidad de los nutrientes. Concluimos que la adición de fructosa cristalina a dietas basadas en raigrás anual aumentó la síntesis de proteína microbiana a los niveles más altos de CP en la dieta.The objective of this experiment was to evaluate the effects of the addition of crystalline fructose and urea to an annual ryegrassbased diet on microbial protein synthesis, fermentation profile and nutrient apparent digestibility, using continuous culture fermenters. Six fermenters were used in a 3 x 2 factorial arrangement with three levels of water soluble carbohydrates (WSC) obtained by crystalline fructose addition (21, 24 and 27 g.100 g DM1; LWSC, MWSC and HWSC, respectively) and two levels of CP obtained by urea addition (14.6 and 18.6 g.100 g DM1, LCP and HCP, respectively). Four 10d periods were ran sequentially (7d for adaptation, 3d for sampling). Microbial protein synthesis was assessed by purine to N ratio. There was a positive interaction between WSC and CP level on microbial protein synthesis (P<0.001). Water soluble carbohydrate level did not affect fermentation pH, ammonia concentration or total volatile fatty acids concentration (VFA). Greater CP levels also increased acetic acid proportion and tended to increase acetic to propionic acid ratio, whereas WSC level did not affect VFA proportions. Treatments did not affect nutrient digestibility. We conclude that the addition of crystalline fructose to annual ryegrass samples increased microbial protein synthesis at the greater levels of CP in diet

    Nano-optical concept design for light management

    Get PDF
    Efficient light management in optoelectronic devices requires nanosystems where high optical qualities coincide with suitable device integration. The requirement of chemical and electrical passivation for integrating nanostrutures in e.g. thin film solar cells points towards the use of insulating and stable dielectric material, which however has to provide high scattering and near-fields as well. We investigate metal@dielectric core-shell nanoparticles and dielectric nanorods. Whereas core-shell nanoparticles can be simulated using Mie theory, nanorods of finite length are studied with the finite element method. We reveal that a metallic core within a thin dielectric shell can help to enhance scattering and near-field cross sections compared to a bare dielectric nanoparticle of the same radius. A dielectric nanorod has the benefit over a dielectric nanosphere in that it can generate much higher scattering cross sections and also give rise to a high near-field enhancement along its whole length. Electrical benefits of e.g. Ag@oxide nanoparticles in thin-film solar cells and ZnO nanorods in hybrid devices lie in reduction of recombination centers or close contact of the nanorod material with the surrounding organics, respectively. The optical benefit of dielectric shell material and elongated dielectric nanostructures is highlighted in this paper

    Hindered Coulomb explosion of embedded Na clusters -- stopping, shape dynamics and energy transport

    Full text link
    We investigate the dynamical evolution of a Na8_8 cluster embedded in Ar matrices of various sizes from N=30 to 1048. The system is excited by an intense short laser pulse leading to high ionization stages. We analyze the subsequent highly non-linear motion of cluster and Ar environment in terms of trajectories, shapes, and energy flow. The most prominent effects are: temporary stabilization of high charge states for several ps, sudden stopping of the Coulomb explosion of the embedded Na8_8 clusters associated with an extremely fast energy transfer to the Ar matrix, fast distribution of energy throughout the Ar layers by a sound wave. Other ionic-atomic transfer and relaxation processes proceed at slower scale of few ps. The electron cloud is almost thermally decoupled from ions and thermalizes far beyond the ps scale.Comment: 12 pages, 10 figures, accepted in Euro. Phys. J.

    Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and 〈3D〉 Models. II. Chemical Properties of the Galactic Metal-poor Disk and the Halo

    Get PDF
    From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged 3D\langle 3{\rm{D}}\rangle models. We show that compared to the 3D\langle 3{\rm{D}}\rangle NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best 3D\langle 3{\rm{D}}\rangle NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]–[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ~ −1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo

    Informal Action—Adjudication—Rule Making: Some Recent Developments in Federal Administrative Law

    Get PDF
    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.QC 20140825</p

    4MOST Consortium Survey 3: Milky Way Disc and Bulge Low-Resolution Survey (4MIDABLE-LR)

    Full text link
    The mechanisms of the formation and evolution of the Milky Way are encoded in the orbits, chemistry and ages of its stars. With the 4MOST MIlky way Disk And BuLgE Low-Resolution Survey (4MIDABLE-LR) we aim to study kinematic and chemical substructures in the Milky Way disc and bulge region with samples of unprecedented size out to larger distances and greater precision than conceivable with Gaia alone or any other ongoing or planned survey. Gaia gives us the unique opportunity for target selection based almost entirely on parallax and magnitude range, hence increasing the efficiency in sampling larger Milky Way volumes with well-defined and effective selection functions. Our main goal is to provide a detailed chrono-chemo-kinematical extended map of our Galaxy and the largest Gaia follow-up down to G=19G = 19 magnitudes (Vega). The complex nature of the disc components (for example, large target densities and highly structured extinction distribution in the Milky Way bulge and disc area), prompted us to develop a survey strategy with five main sub-surveys that are tailored to answer the still open questions about the assembly and evolution of our Galaxy, while taking full advantage of the Gaia data.Comment: Part of the 4MOST issue of The Messenger, published in preparation of 4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm
    corecore