9,779 research outputs found

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    Transport on exploding percolation clusters

    Full text link
    We propose a simple generalization of the explosive percolation process [Achlioptas et al., Science 323, 1453 (2009)], and investigate its structural and transport properties. In this model, at each step, a set of q unoccupied bonds is randomly chosen. Each of these bonds is then associated with a weight given by the product of the cluster sizes that they would potentially connect, and only that bond among the q-set which has the smallest weight becomes occupied. Our results indicate that, at criticality, all finite-size scaling exponents for the spanning cluster, the conducting backbone, the cutting bonds, and the global conductance of the system, change continuously and significantly with q. Surprisingly, we also observe that systems with intermediate values of q display the worst conductive performance. This is explained by the strong inhibition of loops in the spanning cluster, resulting in a substantially smaller associated conducting backbone.Comment: 4 pages, 4 figure

    A time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities

    Get PDF
    We present an efficient perturbative method to obtain both static and dynamic polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on the solution of a frequency dependent Sternheimer equation, within the formalism of time-dependent density functional theory, and allows the calculation of the response both in resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens the way to the investigation of response properties of very large molecular systems. To demonstrate the capabilities of this method, we implemented it in a real-space (basis-set free) code, and applied it to benchmark molecules, namely CO, H2O, and paranitroaniline (PNA). Our results are in agreement with experimental and previous theoretical studies, and fully validate our approach.Comment: 9 pages, 4 figure

    Elliptic Flow and Dissipation in Heavy-Ion Collisions at E_{lab} = (1--160)A GeV

    Full text link
    Elliptic flow in heavy-ion collisions at incident energies ElabE_{lab}\simeq (1--160)A GeV is analyzed within the model of 3-fluid dynamics (3FD). We show that a simple correction factor, taking into account dissipative affects, allows us to adjust the 3FD results to experimental data. This single-parameter fit results in a good reproduction of the elliptic flow as a function of the incident energy, centrality of the collision and rapidity. The experimental scaling of pion eccentricity-scaled elliptic flow versus charged-hadron-multiplicity density per unit transverse area turns out to be also reasonably described. Proceeding from values of the Knudsen number, deduced from this fit, we estimate the upper limit the shear viscosity-to-entropy ratio as η/s12\eta/s \sim 1-2 at the SPS incident energies. This value is of the order of minimal η/s\eta/s observed in water and liquid nitrogen.Comment: 10 pages, 7 figures, version accepted by Phys. Rev.

    Estudo da oferta e comercialização de repolho na CEAPE no período de 1999 a 2005.

    Get PDF
    bitstream/item/26141/1/f-11.pd

    Fracturing highly disordered materials

    Full text link
    We investigate the role of disorder on the fracturing process of heterogeneous materials by means of a two-dimensional fuse network model. Our results in the extreme disorder limit reveal that the backbone of the fracture at collapse, namely the subset of the largest fracture that effectively halts the global current, has a fractal dimension of 1.22±0.011.22 \pm 0.01. This exponent value is compatible with the universality class of several other physical models, including optimal paths under strong disorder, disordered polymers, watersheds and optimal path cracks on uncorrelated substrates, hulls of explosive percolation clusters, and strands of invasion percolation fronts. Moreover, we find that the fractal dimension of the largest fracture under extreme disorder, df=1.86±0.01d_f=1.86 \pm 0.01, is outside the statistical error bar of standard percolation. This discrepancy is due to the appearance of trapped regions or cavities of all sizes that remain intact till the entire collapse of the fuse network, but are always accessible in the case of standard percolation. Finally, we quantify the role of disorder on the structure of the largest cluster, as well as on the backbone of the fracture, in terms of a distinctive transition from weak to strong disorder characterized by a new crossover exponent.Comment: 5 pages, 4 figure

    Dinâmica populacional de Ctenarytaina spatulata (Hemiptera: Psyllidae) em Eucaluptus grandis com novos registros de ocorrência.

    Get PDF
    Dentre os fatores físicos que exercem influência sobre os insetos, os mais importantes são a temperatura, a umidade, luz e o vento. Quanto à temperatura, os insetos, de um modo geral, desenvolvem-se melhor em temperaturas próximas a 25o C, podendo, no entanto, viver numa larga faixa de temperaturas. Dentro da faixa favorável, os insetos apresentam estreitas faixas de melhor desenvolvimento. De forma análoga à temperatura, as exigências de água pelos insetos variam muito, principalmente devido seus hábitos alimentares. A luz é um dos fatores limitantes aos seres vivos, podendo influenciar na reprodução, dispersão, emergência, alimentação e escolha do hospedeiro (BRENNAN & WEINBAUM 2001d). O vento, além de afetar a temperatura e umidade do ambiente, auxilia os insetos nos processos de dispersão e migração, principalmente quando procuram novo habitat, para alimentação e reprodução (LARA, 1979)

    Utilização de caldas orgânicas fermentadas no controle do Mal-do-Panamá da bananeira.

    Get PDF
    A banana é uma das culturas mais importantes no cenário agrícola nacional, tendo cerca de 520 mil hectares de área plantada. Dentre as doenças que ocorre na cultura da bananeira, o mal-do-Panamá, causado pelo fungo Fusariumoxysporum f. sp. cubense (Foc) é considerada a mais destrutiva
    corecore