2,646 research outputs found

    Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis.

    Get PDF
    The genus Gymnotus (Gymnotiformes) contains over 40 species of freshwater electric fishes exhibiting a wide distribution throughout Central and South America, and being particularly prevalent in the Amazon basin. Cytogenetics has been an important tool in the cytotaxonomy and elucidation of evolutionary processes in this genus, including the unraveling the variety of diploid chromosome number (2n = from 34 to 54), the high karyotype diversity among species with a shared diploid number, different sex chromosome systems, and variation in the distribution of several Repetitive DNAs and colocation and association between those sequences. Recently whole chromosome painting (WCP) has been used for tracking the chromosomal evolution of the genus, showing highly reorganized karyotypes and the conserved synteny of the NOR bearing par within the clade G. carapo. In this study, painting probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30 m/sm + 12 st/a) were hybridized to the mitotic metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20 st/a). Our results uncovered chromosomal rearrangements and a high number of repetitive DNA regions. From the 12 chromosome pairs of G. carapo that can be individually differentiated (GCA1-3, 6, 7, 9, 14, 16, and 18-21), six pairs (GCA 1, 9, 14, 18, 20, 21) show conserved homology with GAR, five pairs (GCA 1, 9, 14, 20, 21) are also shared with cryptic species G. carapo 2n = 40 (34 m/sm + 6 st/a) and only the NOR bearing pair (GCA 20) is shared with G. capanema (GCP 2n = 34, 20 m/sm + 14 st/a). The remaining chromosomes are reorganized in the karyotype of GAR. Despite the close phylogenetic relationships of these species, our chromosome painting studies demonstrate an extensive reorganization of their karyotypes

    GLUT1-mediated glucose uptake plays a crucial role during Plasmodium hepatic infection.

    Get PDF
    Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei-infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development

    Parasites and allergy: observations from Brazil.

    Get PDF
    Brazil is a middle-income country undergoing the epidemiological transition. Effects of changes in daily life habits, and access to clean water, sanitation and urban services on a growing urban population have contributed to a double burden of both infectious and non-communicable chronic diseases. Studies have indicated that parasite infections may modulate the human immune system and influence the development of allergic conditions such as asthma. However, there is no consensus in the published literature on the effects of parasitic infections on allergy, perhaps as a consequence of factors determining the epidemiology of these infections that vary between populations such as age of first infection, duration and chronicity of infections, parasite burden and species, and host genetic susceptibility. In this review, we discuss the observations from Brazil concerning the relationship between parasite infections and allergy. This article is protected by copyright. All rights reserved

    The phonon theory of liquid thermodynamics

    Get PDF
    Heat capacity of matter is considered to be its most important property because it holds information about system's degrees of freedom as well as the regime in which the system operates, classical or quantum. Heat capacity is well understood in gases and solids but not in the third state of matter, liquids, and is not discussed in physics textbooks as a result. The perceived difficulty is that interactions in a liquid are both strong and system-specific, implying that the energy strongly depends on the liquid type and that, therefore, liquid energy can not be calculated in general form. Here, we develop a phonon theory of liquids where this problem is avoided. The theory covers both classical and quantum regimes. We demonstrate good agreement of calculated and experimental heat capacity of 21 liquids, including noble, metallic, molecular and hydrogen-bonded network liquids in a wide range of temperature and pressure.Comment: 7 pages, 4 figure

    Fracturing ranked surfaces

    Get PDF
    Discretized landscapes can be mapped onto ranked surfaces, where every element (site or bond) has a unique rank associated with its corresponding relative height. By sequentially allocating these elements according to their ranks and systematically preventing the occupation of bridges, namely elements that, if occupied, would provide global connectivity, we disclose that bridges hide a new tricritical point at an occupation fraction p=pcp=p_{c}, where pcp_{c} is the percolation threshold of random percolation. For any value of pp in the interval pc<p1p_{c}< p \leq 1, our results show that the set of bridges has a fractal dimension dBB1.22d_{BB} \approx 1.22 in two dimensions. In the limit p1p \rightarrow 1, a self-similar fracture is revealed as a singly connected line that divides the system in two domains. We then unveil how several seemingly unrelated physical models tumble into the same universality class and also present results for higher dimensions

    Short-Term Red Wine Consumption Promotes Differential Effects on Plasma Levels of High-Density Lipoprotein Cholesterol, Sympathetic Activity, and Endothelial Function in Hypercholesterolemic, Hypertensive, and Healthy Subjects

    Get PDF
    OBJECTIVES: To compare the metabolic, hemodynamic, autonomic, and endothelial responses to short-term red wine consumption in subjects with hypercholesterolemia or arterial hypertension, and healthy controls. METHODS: Subjects with hypercholesterolemia (n=10) or arterial hypertension (n=9), or healthy controls (n=7) were given red wine (250 mL/night) for 15 days. Analyses were performed before and after red wine intake. RESULTS: Red wine significantly increased the plasma levels of HDL-cholesterol in the controls, but not in the other groups. The effects on hemodynamic measurements were mild, non-significantly more prominent in healthy subjects, and exhibited high interindividual variability. Across all participants, mean blood pressure decreased 7 mmHg (p <0.01) and systemic vascular resistance decreased 7% (p = 0.05). Heart rate and cardiac output did not significantly change in any group. Red wine enhanced muscle sympathetic fibular nerve activity in hypercholesterolemic and hypertensive patients, but not in controls. At baseline, brachial artery flow-mediated dilation was impaired in patients with hypercholesterolemia and arterial hypertension; red wine restored the dilation in the hypercholesterolemic group but not in the hypertensive group. CONCLUSIONS: Red wine elicits different metabolic, autonomic, and endothelial responses among individuals with hypercholesterolemia or arterial hypertension and healthy controls. Our findings highlight the need to consider patient characteristics when evaluating the response to red wine.(FAPESP) São Paulo Research Foundatio

    Application of the PISA design model to monopiles embedded in layered soils

    Get PDF
    The PISA design model is a procedure for the analysis of monopile foundations for offshore wind turbine applications. This design model has been previously calibrated for homogeneous soils; this paper extends the modelling approach to the analysis of monopiles installed at sites where the soil profile is layered. The paper describes a computational study on monopiles embedded in layered soil configurations comprising selected combinations of soft and stiff clay and sand at a range of relative densities. The study comprises (a) analyses of monopile behaviour using detailed three-dimensional (3D) finite-element analysis, and (b) calculations employing the PISA design model. Results from the 3D analyses are used to explore the various influences that soil layering has on the performance of the monopile. The fidelity of the PISA design model is assessed by comparisons with data obtained from equivalent 3D finite-element analyses, demonstrating a good agreement in most cases. This comparative study demonstrates that the PISA design model can be applied successfully to layered soil configurations, except in certain cases involving combinations of very soft clay and very dense sand. </jats:p

    PISA design methods for offshore wind turbine monopiles

    Get PDF
    Abstract This paper provides an overview of the PISA design model recently developed for laterally loaded offshore wind turbine monopiles through a major European joint-industry academic research project, the PISA Project. The focus was on large diameter, relatively rigid piles, with low length to diameter (L/D) ratios, embedded in clay soils of different strength characteristics, sand soils of different densities and in layered soils combining clays and sands. The resulting design model introduces new procedures for site specific calibration of soil reaction curves that can be applied within a one-dimensional (1D), Winkler-type, computational model. This paper summarises the results and key conclusions from PISA, including design methods for (a) stiff glacial clay till (Cowden till), (b) brittle stiff plastic clay (London clay), (c) soft clay (Bothkennar clay), (d) sand of varying densities (Dunkirk), and, (e) layered profiles (combining soils from (a) to (d)). The results indicate that the homogeneous soil reaction curves applied appropriately for layered profiles in the 1D PISA design model provide a very good fit to the three-dimensional finite element (3D FE) calculations, particularly for profiles relevant to current European offshore wind farm sites. Only a small number of cases, involving soft clay, very dense sand and L/D = 2 monopiles, would appear to require more detailed and bespoke analysis.</jats:p
    corecore