9 research outputs found

    Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms

    Get PDF
    Aims: to determine the presence of Clostridium difficile on fattening pig farms in north-eastern Spain. Methods and results: Twenty-seven farms were sampled. Pools of pig faecal samples (n = 210), samples of intestinal content from common farm pest species (n = 95) and environment-related samples (n = 93) were collected. Isolates were tested for toxin genes of C. difficile, and typed by PCR-ribotyping and toxinotyping. The minimal inhibitory concentrations of six antimicrobial agents were determined using Etest. Thirty-four isolates were obtained from 12 farms, and 30 (88·2%) had toxin genes. Seven ribotypes were identified. Ribotype 078 and its variant 126 were predominant (52·9%). The same ribotypes were isolated from different animal species on the same farm. None of the isolates were resistant to metronidazole or vancomycin. Conclusions: Clostridium difficile was common within the pig farm environment. Most of the positive samples came from pest species or were pest-related environmental samples. Significance and Impact of the Study: Pest species were colonized with toxigenic and antimicrobial-resistant C. difficile strains of the same ribotypes that are found in humans and pigs. Rodents and pigeons may transmit toxigenic and antimicrobial-resistant C. difficile strains that are of the same ribotypes as those occuring in humans

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Molecular analysis of three Clostridium difficile strain genomes isolated from pig farm-related samples

    No full text
    Clostridium difficile is an anaerobic spore-forming bacillus that usually causes gastrointestinal disorders in man and other animal species. Most of the strains isolated from animals are toxigenic being the virulent ribotype (RT) 078 predominant in several animal species. Although C. difficile is pathogenic to both humans and animals, there is no direct evidence of zoonosis. Deep genome sequencing provides sufficient resolution to analyse which strains found in animals might be related to human pathogens. So far, there are only a few fully sequenced genomes of C. difficile strains isolated from domestic and wild animals. Using Illumina technology, we have sequenced the genome of three isolates; a strain isolated from the vagina of a sow (5754), one from rat (Rattus spp) intestinal content (RC10) and a third one isolated from environmental rat faeces (RF17). Both, rat and rat faeces were sampled in fattening pig farms. Our study reveals a close genetic relationship of two of these isolates with the virulent strain M120 (RT078) isolated from a human patient. The analysis of the sequences has revealed the presence of antibiotic resistance genes, mobile elements, including the transposon linked with virulence Tn6164, and the similarity of virulence factors between these isolates and human strains. This is the first study focused on the sequencing of C. difficile genomes obtained from wild animals like rats, which can be considered as potential reservoirs for humans and other animal species. This study can help to understand the genome composition and epidemiology of this bacterium species.</p
    corecore