12 research outputs found

    In vivo modulation of dopaminergic nigrostriatal pathways by cytisine derivatives: Implications for Parkinson's Disease

    No full text
    Nicotinic acetylcholine receptor agonists are considered potential pharmacological agents for Parkinson's Disease treatment, due to their ability to improve experimental Parkinson symptomatology, reduce 3,4-dihydroxy-L-phenylalanine-incluced clyskinesias and stop the neurodegenerative process at an experimental level. In the present work, the ability of the nicotinic agonistcytisine and two halogenated derivatives (3-bromocytisine and 5-bromocytisine) to induce striatal dopamine release was characterized in vivo by microdialysis. Cytisine, 5-bromocytisine and nicotine were much more efficacious than 3-bromocytisine in eliciting dopamine release in response to their local application through the microdialysis probe. Moreover, the agonists were intermittently administered before and after an intranigral injection of 6-hydroxydopamine (6-OHDA), and striatal dopamine tissue levels were assessed 8 days after the lesion. Both cytisine and its 5-bromo derivative (but not the 3-bromo derivative) significantly prevented the decrease of striatal dopamine tissue levels induced by 6-OHDA. These results suggest that the efficacy of nicotinic agonists to stimulate dopamine release in vivo through presynaptic nicotinic receptors could be related to their potential to induce striatal protection.This work was supported by the Wellcome Trust Collaborative Research Initiative Grant 073295/Z/03/Z and FONDECYT Grant 1040776

    Caffeine, a common active adulterant of cocaine, enhances the reinforcing effect of cocaine and its motivational value

    Get PDF
    Rationale: Caffeine is one of the psychoactive substances most widely used as an adulterant in illicit drugs, such as cocaine. Animal studies have demonstrated that caffeine is able to potentiate several cocaine actions, although the enhancement of the cocaine reinforcing property by caffeine is less reported, and the results depend on the paradigms and experimental protocols used. Objectives: We examined the ability of caffeine to enhance the motivational and rewarding properties of cocaine using an intravenous self-administration paradigm in rats. Additionally, the role of caffeine as a primer cue during extinction was evaluated. Methods: In naïve rats, we assessed (1) the ability of the cocaine (0.250–0.125 mg/kg/infusion) and caffeine (0.125–0.0625 mg/kg/infusion) combination to maintain self-administration in fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement compared with cocaine or caffeine alone and (2) the effect of caffeine (0.0625 mg/kg/infusion) in the maintenance of responding in the animals exposed to the combination of the drugs during cocaine extinction. Results: Cocaine combined with caffeine and cocaine alone was self-administered on FR and PR schedules of reinforcement. Interestingly, the breaking point determined for the cocaine + caffeine group was significantly higher than the cocaine group. Moreover, caffeine, that by itself did not maintain self-administration behavior in naïve rats, maintained drug-seeking behavior of rats previously exposed to combinations of cocaine + caffeine. Conclusions: Caffeine enhances the reinforcing effects of cocaine and its motivational value. Our results highlight the role of active adulterants commonly used in cocaine-based illicit street drugs

    Isolation and characterization of neurotoxic astrocytes derived from adult triple transgenic Alzheimer's disease mice

    No full text
    Alzheimer's disease has been considered mostly as a neuronal pathology, although increasing evidence suggests that glial cells might play a key role in the disease onset and progression. In this sense, astrocytes, with their central role in neuronal metabolism and function, are of great interest for increasing our understanding of the disease. Thus, exploring the morphological and functional changes suffered by astrocytes along the course of this disorder has great therapeutic and diagnostic potential. In this work we isolated and cultivated astrocytes from symptomatic 9-10-months-old adult 3xTg-AD mice, with the aim of characterizing their phenotype and exploring their pathogenic potential. These “old” astrocytes occurring in the 3xTg-AD mouse model of Alzheimer's Disease presented high proliferation rate and differential expression of astrocytic markers compared with controls. They were neurotoxic to primary neuronal cultures both, in neuronal-astrocyte co-cultures and when their conditioned media (ACM) was added into neuronal cultures. ACM caused neuronal GSK3ÎČ activation, changes in cytochrome c pattern, and increased caspase 3 activity, suggesting intrinsic apoptotic pathway activation. Exposure of neurons to ACM caused different subcellular responses. ACM application to the somato-dendritic domain in compartmentalised microfluidic chambers caused degeneration both locally in soma/dendrites and distally in axons. However, exposure of axons to ACM did not affect somato-dendritic nor axonal integrity. We propose that this newly described old 3xTg-AD neurotoxic astrocytic population can contribute towards the mechanistic understanding of the disease and shed light on new therapeutical opportunities

    Multitarget 2â€Č-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities

    No full text
    The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid ÎČ (AÎČ) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2â€Č-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 ÎŒM), 5a (IC50 = 0.084 ± 0.003 ÎŒM), 2c (IC50 = 0.095 ± 0.019 ÎŒM) and 2a (IC50 = 0.111 ± 0.006 ÎŒM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2â€Č-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 ÎŒM to 15.17 ± 6.03 ÎŒM) and reduced the aggregation propensity of AÎČ. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the Îł-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 ÎŒM and 5.0 ± 1.1 ÎŒM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2â€Č-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.Fil: Kamecki GonzĂĄlez, Fabiola Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Knez, Damijan. University of Ljubljana; EsloveniaFil: Carvalho, Diego. Instituto de Investigaciones BiolĂłgicas Clemente Estable; UruguayFil: Marcucci, Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Rademacher, Marina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Higgs, Josefina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Ćœakelj, Simon. University of Ljubljana; EsloveniaFil: Marcos, Alejandra LucĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: de Tezanos Pinto, Felicitas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Abin Carriquiry, Juan AndrĂ©s. Instituto de Investigaciones BiolĂłgicas Clemente Estable; UruguayFil: Gobec, Stanislav. University of Ljubljana; EsloveniaFil: Colettis, Natalia Claudia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Marder, Nora Mariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; Argentin
    corecore