66 research outputs found

    Bank capital: a myth resolved

    Get PDF
    In order to promote financial stability, regulatory authorities pay a lot of attention in setting minimum capital levels. In addition to these requirements, financial institutions calculate their own economic capital reflecting the unexpected losses and true risk according to the specific characteristics of their portfolio. The current Basel I framework pays little or no attention to the creditworthiness of a borrower in deciding on the regulatory capital requirements. As a result, a lot of banks remove low-risk assets from their balance sheets and only retain relatively high risk assets on balance. The recently introduced Basel II framework should result in a further convergence between regulatory and economic capital. However, recent papers (Elizalde et al., 2006, Jackson et al., 2002 and Jacobson et al. 2006) argue that also under Basel II, regulatory and economic capital will have different determinants. This paper first gives an overview of capital adequacy and then further describes the differences and similarities between economic and regulatory capital based on a literature review

    Presence of Inulin-Type Fructo-Oligosaccharides and Shift from Raffinose Family Oligosaccharide to Fructan Metabolism in Leaves of Boxtree (Buxus sempervirens)

    Get PDF
    from raffinose family oligosaccharide to fructan metabolism in leaves of boxtree (Buxus sempervirens) Wim Van den Ende1,* Marlies Coopman1, Rudy Vergauwen1, AndrĂ© Van Laere11 KU Leuven, Laboratory of Molecular Plant Biology, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium* Correspondence: Wim Van den Ende, Laboratory of Molecular Plant Biology,Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium tel +32 16321952; fax +32 16321967;[email protected]: inulin, oligosaccharides, stress, RFO, fructanAbstractFructans are known to occur in 15% of flowering plants and their accumulation is often associated with stress responses. Typically, particular fructan types occur within particular plant families. The family of the Buxaceae, harbouring Pachysandra terminalis, an accumulator of graminan- and levan-type fructans, also harbours boxtree (Buxus sempervirens), a cold and drought tolerant species. Surprisingly, boxtree leaves do not accumulate the expected graminan- and levan-type fructans but small inulin fructo-oligosaccharides (FOS: 1-kestotriose and nystose) and raffinose family oligosaccharides (RFO: raffinose and stachyose) instead. The seasonal variation in concentrations of glucose, fructose, sucrose, FOS and RFO were followed. Raffinose and stachyose peaked during the winter months, while FOS peaked at a very narrow time-interval in spring, immediately preceded by a prominent sucrose accumulation. Sucrose may function as a reserve carbohydrate in winter and early spring leaves. The switch from RFO to fructan metabolism in spring strongly suggests that fructan and RFO fulfil distinct roles in boxtree leaves. RFO may play a key role in the cold acclimation of winter leaves while temporal fructan biosynthesis in spring might increase sink strength to sustain the formation of new shoots

    Purification, cloning and functional characterization of a fructan 6-exohydrolase from wheat (Triticum aestivum L.)

    Get PDF
    Fructans, β2-1 and/or β2-6 linked polymers of fructose, are produced by fructosyltransferases (FTs) from sucrose. They are important storage carbohydrates in many plants. Fructan reserves, widely distributed in plants, are believed to be mobilized via fructan exohydrolases (FEHs). The purification, cloning, and functional characterization of a 6-FEH from wheat (Triticum aestivum L.) are reported here. It is the first FEH shown to hydrolyse exclusively β2-6 bonds found in a fructan-producing plant. The enzyme was purified to homogeneity using ammonium sulphate precipitation, ConA affinity-, ion exchange-, and size exclusion chromatography and yielded a single band of 70 kDa following SDS-PAGE. Sequence information obtained by mass spectrometry of in-gel trypsin digests demonstrated the presence of a single protein. Moreover, these unique peptide sequences, together with some ESTs coding for them, could be used in a RT-PCR based strategy to clone a 1.7 kb cDNA. Functionality tests of the cDNA performed after heterologous expression in the yeast Pichia pastoris showed—as did the native enzyme from wheat—a very high activity of the produced protein against bacterial levan, 6-kestose, and phlein whilst sucrose and inulin were not used as substrates. Therefore the enzyme is a genuine 6-FEH. In contrast to most FEHs from fructan-accumulating plants, this FEH is not inhibited by sucrose. The relative abundance of 6-FEH transcripts in various tissues of wheat was investigated using quantitative RT-PC

    Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)

    Get PDF
    The main storage compounds in Lolium perenne are fructans with prevailing β(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgar

    Early treatment versus expectative management of patent ductus arteriosus in preterm infants

    Get PDF
    _Background:_ Much controversy exists about the optimal management of a patent ductus arteriosus (PDA) in preterm infants, especially in those born at a gestational age (GA) less than 28weeks. No causal relationship has been proven between a (haemodynamically significant) PDA and neonatal complications related to pulmonary hyperperfusion and/or systemic hypoperfusion. Although studies show conflicting results, a common understanding is that medical or surgical treatment of a PDA does not seem to reduce the risk of major neonatal morbidities and mortality. As the PDA might have closed spontaneously, treated children are potentially exposed to iatrogenic adverse effects. A conservative approach is gaining interest worldwide, although convincing evidence to support its use is lacking. _Methods:_ This multicentre, randomised, non-inferiority trial is conducted in neonatal intensive care units. The study population consists of preterm infants (GA1.5mm. Early treatment (between 24 and 72h postnatal age) with the cyclooxygenase inhibitor(COXi) ibuprofen (IBU) is compared with an expectative management (no intervention intended to close a PDA). The primary outcome is the composite of mortality, and/or necrotising enterocolitis (NEC) Bell stage ≥ IIa, and/or bronchopulmonary dysplasia (BPD) defined as the need for supplemental oxygen, all at a postmenstrual age (PMA) of 36weeks. Secondary outcome parameters are short term sequelae of cardiovascular failure, comorbidity and adverse events assessed during hospitalization and long-term neurodevelopmental outcome assessed at a corrected age of 2 years. Consequences regarding health economics are evaluated by cost effectiveness analysis and budget impact analysis. _Discussion:_ As a conservative approach is gaining interest, we investigate whether in preterm infants, born at a GA less than 28weeks, with a PDA an expectative management is non-inferior to early treatment with IBU regarding to the composite outcome of mortality and/or NEC and/or BPD at a PMA of 36weeks

    When Music and Long-Term Memory Interact: Effects of Musical Expertise on Functional and Structural Plasticity in the Hippocampus

    Get PDF
    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus

    Induction of 1-FEH in mature chicory roots appears to be related to low temperatures rather than to leaf damage

    No full text
    Large-scale inulin production from chicory roots (Cichorium intybus L.) is hampered by the induction of 1-FEH activity (fructan 1-exohydrolase) and concomitant fructose production in autumn, coincident with a period with low night temperatures that cause leaf damage. To understand whether leaf damage per se is sufficient for 1-FEH induction and fructan breakdown, we defoliated mature chicory plants at a preharvest stage (September 10) and investigated the changes in carbohydrate levels and 1-FEH activities. Also, the activities of 1-SST (sucrose:sucrose 1-fructosyl transferase, EC 2.4.1.99), 1-FFT (fructan:fructan 1-fructosyl transferase, EC 2.4.1.100), and acid invertase (EC 3.2.1.26) were determined. Defoliation did not result in a prompt fructan breakdown and increase in 1-FEH activity, but after 10 days fructan breakdown and 1-FEH activities became higher in the defoliated plants. Defoliation resulted in a sharp decrease in 1-SST activity over the first 24 h. Afterwards, root 1-SST activities of defoliated plants remained at a lower level than in control plants. 1-FFT and invertase activities were not affected by defoliation. It can be concluded that defoliation of plants at the preharvest stage by itself did not induce the same rapid changes as observed in naturally induced October roots by low temperature (harvest stage). Taken together with our finding that 1-FEH is not induced in chicory roots when plants are transferred to the greenhouse early autumn (minimal temperature 14 degrees C), we conclude that low temperatures might be essential for 1-FEH induction.status: publishe

    Fructose 2,6-bisphosphate and germination of fungal spores

    No full text
    Induction of germination of Phycomyces blakesleeanus spores by a heat shock and subsequent incubation at 25°C in a glucose- or 6-deoxyglucose-containing culture medium resulted in an intense (20-40 times the initial value) rise in the concentration of fructose 2,6-bisphosphate and hexose 6-phosphates. The increase in the concentration of fructose 2,6-bisphosphate but not that of hexose 6-phosphates was restricted to a 25-min period during which the spores acquired an irreversible capacity to germinate. Incubation of the spores in water for any period of time during this critical period resulted in a parallel decrease in their ability to form hexose phosphates and to germinate. A similar rise in hexose phosphate concentration was also observed when P. blakesleeanus spores were activated by incubation in the presence of acetate and also after induction of germination of other dormant (Neurospora tetrasperma) or nondormant (Mucor racemosus) fungal spores. Extracts of dormant and heat-activated P. blakesleeanus spores contain a fructose, 1,6-bisphosphatase that is inhibited by fructose 2,6-bisphosphate and AMP in a synergistic manner. They also contain a 6-phosphofructo-2-kinase and a fructose-2,6-bisphosphatase
    • …
    corecore