38 research outputs found

    The strong-coupling limit of minimal lattice Landau gauge

    Full text link
    We study the gluon and ghost propagators of lattice Landau gauge in the strong coupling limit β=0\beta = 0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behaviour of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q2ΛQCD2q^2 \ll \Lambda_\mathrm{QCD}^2. In the strong-coupling limit, this same behaviour is obtained for the larger values of a2q2a^2q^2 (in units of the lattice spacing aa), where it is otherwise swamped by the gauge field dynamics. Deviations for a2q2<1a^2 q^2 < 1 are well parametrized by a transverse gluon mass 1/a\propto 1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behaviour does not.Comment: 7 pages; talk presented at the XXVI International Symposium on Lattice Field Theory, July 14-19 2008, Williamsburg, Virginia, US

    Spectroscopy of four-dimensional N=1\mathcal{N}=1 supersymmetric SU(3) Yang-Mills theory

    Full text link
    Supersymmetric gauge theories are an important building block for extensions of the standard model. As a first step towards Super-QCD we investigate the pure gauge sector with gluons and gluinos on the lattice, in particular the low energy mass spectrum: meson-like gluinoballs, gluino-glueballs and pure glueballs. We report on some first calculations performed with clover improved Wilson fermions on rather small lattices. The supersymmetric continuum limit and particle masses are discussed and compared to predictions from effective field theory.Comment: 8 pages, 3 figures, talk presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    Fractional electric charge and quark confinement

    Full text link
    Owing to their fractional electric charges, quarks are blind to transformations that combine a color center phase with an appropriate electromagnetic one. Such transformations are part of a global Z6Z_6-like center symmetry of the Standard Model that is lost when quantum chromodynamics (QCD) is treated as an isolated theory. This symmetry and the corresponding topological defects may be relevant to non-perturbative phenomena such as quark confinement, much like center symmetry and ordinary center vortices are in pure SU(NN) gauge theories. Here we report on our investigations of an analogous symmetry in a 2-color model with dynamical Wilson quarks carrying half-integer electric charge.Comment: Conference proceedings for the XXIX International Symposium on Lattice Field Theory, 201

    Role of center vortices in chiral symmetry breaking in SU(3) gauge theory

    Get PDF
    We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.Comment: 8 pages, 9 figure

    SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition

    Full text link
    We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory (NSPT). In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite-size and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order NSPT.Comment: 18 pages, 19 figures, 5 table

    Lattice Landau gauge via Stereographic Projection

    Get PDF
    The complete cancellation of Gribov copies and the Neuberger 0/0 problem of lattice BRST can be avoided in modified lattice Landau gauge. In compact U(1), where the problem is a lattice artifact, there remain to be Gribov copies but their number is exponentially reduced. Moreover, there is no cancellation of copies there as the sign of the Faddeev-Popov determinant is positive. Applied to the maximal Abelian subgroup this avoids the perfect cancellation amongst the remaining Gribov copies for SU(N) also. In addition, based on a definition of gauge fields on the lattice as stereographically-projected link variables, it provides a framework for gauge fixed Monte-Carlo simulations. This will include all Gribov copies in the spirit of BRST. Their average is not zero, as demonstrated explicitly in simple models. This might resolve present discrepancies between gauge-fixed lattice and continuum studies of QCD Green's functions.Comment: 5 pages, talk presented at the 8th Conference Quark Confinement and the Hadron Spectrum, September 1-6, 2008, Mainz, German

    Modified Lattice Landau Gauge

    Get PDF
    We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.Comment: 7 pages, 2 figures, for the proceedings of the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, German

    Direct determinations of the nucleon and pion σ\sigma terms at nearly physical quark masses

    Full text link
    We present a high statistics study of the pion and nucleon light and strange quark sigma terms using Nf=2N_f=2 dynamical non-perturbatively improved clover fermions with a range of pion masses down to mπ150m_\pi\sim 150 MeV and several volumes, Lmπ=3.4Lm_\pi=3.4 up to 6.76.7, and lattice spacings, a=0.060.08a=0.06-0.08 fm, enabling a study of finite volume and discretisation effects for mπ260m_\pi\gtrsim 260 MeV. Systematics are found to be reasonably under control. For the nucleon we obtain σπN=35(6)\sigma_{\pi N}=35(6) MeV and σs=35(12)\sigma_s=35(12) MeV, or equivalently in terms of the quark fractions, fTu=0.021(4)f_{T_u}=0.021(4), fTd=0.016(4)f_{T_d}=0.016(4) and fTs=0.037(13)f_{T_s}=0.037(13), where the errors include estimates of both the systematic and statistical uncertainties. These values, together with perturbative matching in the heavy quark limit, lead to fTc=0.075(4)f_{T_c}=0.075(4), fTb=0.072(2)f_{T_b}=0.072(2) and fTt=0.070(1)f_{T_t}=0.070(1). In addition, through the use of the (inverse) Feynman-Hellmann theorem our results for σπN\sigma_{\pi N} are shown to be consistent with the nucleon masses determined in the analysis. For the pion we implement a method which greatly reduces excited state contamination to the scalar matrix elements from states travelling across the temporal boundary. This enables us to demonstrate the Gell-Mann-Oakes-Renner expectation σπ=mπ/2\sigma_\pi=m_\pi/2 over our range of pion masses.Comment: 31 pages, 18 figures, v2, small changes to text and figure
    corecore