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We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge

configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been

observed to generate chiral symmetry breaking and support the infrared behavior of the quark propagator.

In contrast, we report a weak dependence on the vortex content of the SU(3) gauge configurations,

including the survival of dynamical mass generation on configurations with vanishing string tension.

DOI: 10.1103/PhysRevD.84.034501 PACS numbers: 12.38.Gc, 11.15.Ha, 12.38.Aw

I. INTRODUCTION

The strong nuclear force has two key features: the
dynamical breaking of chiral symmetry (D�SB) and the
confinement of color-charged states. It is tempting to at-
tribute these two phenomena to a single underlying mecha-
nism, an idea supported by finite-temperature studies
where the deconfinement and chiral restoration transitions
are observed to occur at similar temperatures [1–3]. Low-
lying modes of the quark operator, known to dominate
D�SB, are also correlated with the finite-temperature tran-
sition of the Polyakov loop, and hence confinement [4–7].

Over the recent past, evidence has been accumulated by
means of lattice gauge theories that both phenomena are
caused by certain low-energy degrees of freedom. In spe-
cific gauges, these degrees of freedom appear as color-
magnetic monopoles [8–10] or center vortices [11–13].
The idea that center fluxes disorder Wilson loops, and
therefore lead to confinement, is an old one [14,15] and
over the last couple of decades a great deal of work has
been done in lattice gauge theory on such objects, princi-
pally in SU(2) Yang-Mills theory. It turned out to be
difficult to define the vortex content of Yang-Mills theory
in a physically sensible way. It took until the late ’90s until
a successful definition was given [16] and the relevance of
vortices in the continuum limit was established [17]. The
recovery of the string tension from ‘‘vortex-only’’ SU(2)
gauge configurations (i.e., Z2 projected from SU(2)) was
shown [11–13], the finite-temperature deconfinement tran-
sition was understood in terms of vortex properties [18–21]
and a connection to D�SB was discovered [22–25].

The use of Landau-gauge Green’s functions as probes of
D�SB and confinement is an active area of research (see,
e.g., [26,27] for a review). It is known, for example, that the
gluon propagator violates spectral positivity, which is con-
sistent with gluon confinement [28–30]. In the quark

propagator the Dirac scalar part, related at large momenta
to the perturbative running mass, is enhanced at low mo-
menta, even in the chiral limit [31,32]: a demonstration of
D�SB. One feature of this approach is that it allows one to
make statements about light quarks, as opposed to the
static potential of the Wilson loop. In SU(2) gauge theory
the infrared properties of the quark propagator were found
to be dominated by center vortices [25,33]. Unfortunately,
the vortex picture for the gauge group SU(3) is less clear:
while vortex removal eliminates the linear rise of the static
quark potential at large distances, the string tension of
vortex-only configurations falls short by roughly a factor
of 2=3 [23,34,35].
To gain further insights into the SU(3) vortex picture, we

here investigate the SU(3) quark propagator under the
removal of center vortices. We will find that mass genera-
tion remains intact even after removing center vortices,
while the string tension vanishes as expected.

II. CENTER VORTICES

We will identify center vortices in SU(3) Yang-Mills
lattice gauge configurations using standard methods.
Having generated gauge configurations, we will rotate
them to direct maximal center gauge, then project the
gauge links onto the nearest center element. Each configu-
ration can then be decomposed into two pieces: the center
element and ‘‘the rest.’’ An appealing result of such a
decomposition would be the identification of separate
short- and long-ranged pieces, such as are seen in SU(2)
gauge theory [33]; that is, that this decomposition corre-
sponds to a separation of infrared (vortex-only) and ultra-
violet (vortex-removed) physics. Finally, to study the
propagators, the vortex-only and vortex-removed configu-
rations are rotated to Landau gauge and the quark propa-
gators are calculated.
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A statistical ensemble of lattice gauge configurations
is generated using the Lüscher-Weisz [36] mean-field
improved action,

SG ¼ 5�

3

X

sq

1

3
Re trð1�UsqðxÞÞ

� �

12u20

X

rect

1

3
Re trð1�UrectðxÞÞ;

where UsqðxÞ is the plaquette and UrectðxÞ denotes the

rectangular 1� 2 and 2� 1 loops. For the tadpole im-
provement factor we employ the gauge-invariant plaquette
measure

u0 ¼
�
1

3
Re trhUsqi

�
1=4

: (1)

A. Maximal center gauge

In order to identify the center fluxes of a given lattice
configuration it is common to use gauge fixing and center
projection. The center fluxes through an elementary pla-
quette are represented by center link elements Z�ðxÞwhich
take values in the center group Z3 � SUð3Þ:

Z�ðxÞ ¼ exp

�
i
2�

3
m�ðxÞ

�
; m�ðxÞ 2 f�1; 0; 1g:

It is a nontrivial task to find a definition of the center links
that is sensible in the continuum limit. The following
definition has turned out to be fruitful [11,17,23]:

X

x;�

kU�
� ðxÞ � Z�ðxÞk !�;Z�ðxÞ

min : (2)

This has an intuitive interpretation: After a suitable gauge
transformation �ðxÞ, we look for those center links Z�ðxÞ
that represent best a given linkU�ðxÞ. Equation (1) implies

that the overlap between the gauged links and the center
links is maximized:

X

x;�

Re½TrU�
� ðxÞZy

�ðxÞ� !�;Z�ðxÞ
max : (3)

Hence, we will exploit the gauge degrees of freedom to
bring U�

� ðxÞ as close as possible to a center element.

Assuming that the deviations of U�
� ðxÞ from a center

element are small, one might approximately solve (2) by
setting

Z�ðxÞ � 1

3
TrU�

� ðxÞ; or Z�ðxÞ �
�
1

3
TrUy�

� ðxÞ
�
2
: (4)

One gauge condition for determining the gauge transfor-
mation � is

Rmes ¼
X

x;�

jTrU�
� ðxÞj2!� max : (5)

This gauge conditions specifies a particular maximal center
gauge, known in the literature as the ‘‘mesonic’’ center
gauge [23,37,38].

B. Center projection and vortex removal

Once the optimal choice for the gauge transformation
�ðxÞ is obtained, the center links Z�ðxÞ are obtained from

the gauged linksU�
� ðxÞ by center projection. Decomposing

a particular link

1

3
TrU�

� ðxÞ ¼ r�ðxÞ expði’�ðxÞÞ; (6)

where r�ðxÞ is real and ’�ðxÞ 2 ½��;�Þ, Eq. (3) implies

that we locally maximize

cos

�
’�ðxÞ � 2�

3
m�ðxÞ

�
!m�

max : (7)

Hence, the integer m�ðxÞ 2 f�1; 0; 1g closest to

3’�ðxÞ=2� is chosen. Once the center links Z�ðXÞ are

obtained in this way, center fluxes ���ðxÞ are detected

from the center plaquettes

P��ðxÞ ¼ Z�ðxÞZ�ðxþ�ÞZy
�ðxþ �ÞZy

�ðxÞ

¼ exp

�
i
2�

3
���ðxÞ

�
; (8)

where

���ðxÞ 2 f�1; 0; 1g:
We say that a particular plaquette ð�; �; xÞ is intersected by
nontrivial center flux if���ðxÞ � 0. It can be shown, using

the Z3 Bianchi identity, that the set of plaquettes that carry
nontrivial center flux form closed surfaces on the dual
lattice. These surfaces define the world sheets of Z3 vorti-
ces. The theory without center fluxes (vortex-removed
configurations) is defined from the link elements

~U�ðxÞ � U�
� ðxÞZy

�ðxÞ: (9)

C. Numerical results

The configurations are fixed to maximal center gauge by
maximizing the gauge-fixing functional (5) with the help
of a local update algorithm. The algorithm is presented in
detail in [38]. Lattice sizes and simulation parameters are
listed in Table I.
In Fig. 1, we show the final value of the gauge-fixing

functional Rmes for several values of the lattice spacing a.
Generically, increasing values for Rmes are obtained for
decreasing lattice spacing. This indicates that the overlap
of the full configurations with pure center ones increases
towards the continuum limit.
If � denotes the planar vortex area density then the

quantity �a2 can be interpreted as the probability that a
given plaquette carries nontrivial center flux. We have
calculated �a2 for several lattice spacings (see Table I)
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by counting the number of plaquettes with nontrivial center
fluxes and then dividing this number by the total number of
plaquettes on the lattice. The interesting observation is that
the planar vortex density, �, is independent of the lattice
spacing a (Fig. 1) and therefore has a sensible continuum
interpretation. This behavior is in accordance with the
behavior of the SU(2) vortex density, and confirms earlier
findings for the gauge group SU(3) [23].

Now, we calculate the static quark antiquark potential
for ensembles with full SU(3) links, for vortex-only con-
figurations and for vortex-removed configurations. As il-
lustrated in Fig. 2, we observe that the vortex-removed
configurations show no sign of a confining potential. On
the other hand, the vortex-only ensembles give rise to
around 60% of the string tension. This confirms earlier
findings [23,34] and is in sharp contrast to the case of
SU(2) gauge theory: there, the vortices reproduce a great
deal of the full string tension [13].

III. QUARK PROPAGATOR ON THE LATTICE

In a covariant gauge in the continuum, Lorentz invari-
ance allows us to decompose the full quark propagator into

Dirac vector and scalar pieces. In momentum space, the
renormalized Euclidean space quark propagator has the
form

Sð� ;pÞ ¼ 1

ipAð� ;p2Þ þ Bð� ;p2Þ ¼
Zð� ;p2Þ

ipþMðp2Þ ; (10)

where � is the renormalization point.
When the quark-gluon interactions are turned off, the

quark propagator takes its tree-level form

Sð0ÞðpÞ ¼ 1

ipþm
; (11)

wherem is the bare quark mass. When the interactions with
the gluon field are turned on we have

Sð0ÞðpÞ ! Sbareða;pÞ ¼ Z2ð�; aÞSð� ;pÞ; (12)

where a is the regularization parameter (i.e., the lattice
spacing) and Z2ð�; aÞ is the renormalization constant. In
the MOM scheme it is chosen so as to ensure tree-level
behavior at the renormalization point, Zð� ; �2Þ ¼ 1. Note
thatMðp2Þ is renormalization point independent, i.e., since
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FIG. 1 (color online). Left panel: The gauge-fixing functional Rmes after MCG gauge fixing. Right panel: the vortex area density � in
units of the string tension 	 as function of the lattice spacing a.

TABLE I. Simulation parameters �, volumes, string tension a
ffiffiffiffi
	

p
, lattice spacings a and vortex densities. The values for the lattice

spacings for the 163 � 32 lattices have been obtained by using 50 configurations each. For the small � ¼ 4:60 lattice estimates are
taken from the larger lattice.

� Volume Ncon a
ffiffiffiffi
	

p
a	 [fm] �a2 �=	

4.10 123 � 24 15 0.611(20) 0.272(9) 0.1414(4) 0.379(25)

4.38 163 � 32 100 0.368(5) 0.165(3) 0.0539(2) 0.398(30)

4.53 163 � 32 100 0.299(11) 0.134(5) 0.0339(2) 0.380(28)

4.60 163 � 32 100 0.272(11) 0.122(5) 0.0281(2) 0.380(31)

4.60 123 � 24 15 0.272(11) 0.122(5) 0.0289(5) 0.391(32)

4.80 163 � 32 100 0.207(5) 0.093(2) 0.0173(2) 0.404(20)
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Sð�;pÞ is multiplicatively renormalizable all of the
renormalization-point dependence is carried by Zð� ;p2Þ.
For simplicity of notation we suppress the a-dependence of
the bare quantities.

In this work we use the AsqTad quark action [39]
because of its excellent scaling and rotational symmetry
properties [31]. The Dirac scalar and vector functions,
Mðp2Þ and Zðp2Þ are extracted from the propagator using
the techniques described in detail in Ref. [40].

When analyzing our results we will sometimes find it
convenient to use a ‘‘cylinder cut’’ [41], where we select
only data with four-momentum lying near the four-
dimensional diagonal. This is motivated by the observation
that for a given momentum squared, (p2), choosing the
smallest momentum values of each of the Cartesian com-
ponents, p�, should minimize finite lattice spacing arti-

facts. By eliminating points most likely to be affected by
hyper-cubic lattice artifacts it is easier to draw robust
conclusions.

IV. THE INFLUENCE OF CENTER VORTICES

The Landau-gauge quark propagator is calculated on the
163 � 32 configurations at � ¼ 4:60. The quark mass and
wave-function renormalization functions of the original
untouched gauge configurations are illustrated in Fig. 3.
Here symbols are used to identify momenta having a
particular orientation within the lattice. Triangles denote
momenta lying along the Cartesian time direction (the long
dimension), squares denote momenta oriented along one
spatial Cartesian direction, and diamonds denote momenta
oriented along the lattice four-diagonal. A comparison of
triangles and squares is useful in revealing finite volume
effects at small momenta.
As is well known [26,31], the mass function is strongly

enhanced in the infrared. This is true even in the chiral
limit: a clear demonstration of dynamical chiral symmetry
breaking. The infrared value of around 350 MeV is con-
sistent with the constituent quark model. Zðq2Þ is some-
what suppressed in the infrared. A study on larger lattices
reveals a flattening of both Mðq2Þ and Zðq2Þ below around
500 MeV [42]. This is significant for confinement, because
an Euclidean propagator cannot have a point of inflexion
and adhere to reflection positivity [32].

0 0.5 1 1.5 2 2.5 3 3.5 4

r σ1/2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
V

(r
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σ1/
2

Fit to Full SU(3) potential
Vortex β=4.80

No-Vortex β=4.80

No-Vortex β=4.60

Vortex β=4.60

No-Vortex β=4.38

Vortex β=4.38

FIG. 2 (color online). The quark antiquark potential VðrÞ as
function of the quark antiquark distance r for full configurations
(open circles), vortex-only configurations (full squares) and
vortex-removed configurations (open diamonds).

FIG. 3 (color online). The Landau-gauge quark propagator. The left panel shows the mass function Mðq2Þ and the right panel the
wave-function renormalization function Zðq2Þ for m0a ¼ 0:048. The infrared enhancement of the mass function demonstrates D�SB.
Filled (red) triangles, (green) squares and (blue) diamonds denote momenta oriented along the time axis, a spatial axis, or the four-
diagonal, respectively.
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Figure 4 shows the mass and wave-function renormal-
ization functions after removing center vortices. Mass
generation associated with dynamical chiral symmetry
breaking is almost as strong after removing the center
vortices as it was before. A roughening of the mass func-
tion at large momenta suggests that the removal of center
vortices introduces significant noise into the gauge
field configurations giving rise to a larger effective mass.
Zðp2Þ is similarly weakly altered, being slightly noisier
and having less infrared suppression than on the full
configurations.

Figure 5 shows a direct comparison of the quark propa-
gator on the full and vortex-removed configurations. Data
has been cylinder cut to facilitate a detailed comparison.
The wave-function renormalization function has been re-
normalized so that Zðq2Þ ¼ 1 at the largest momentum
considered on the lattice. Only below about 1 GeV is
there any significant difference between the full and
vortex-removed results. It is possible that the removal of
center vortices has caused Zðp2Þ to straighten out, which
could restore reflection positivity and hence be a sign of
deconfinement.

FIG. 4 (color online). Landau-gauge quark propagator for m0a ¼ 0:048 following the removal of center vortices. D�SB still clearly
dominates the mass function. Both functions are somewhat flatter than on the full configurations. Symbols are as in Fig. 3.

FIG. 5 (color online). Landau-gauge quark propagator for m0a ¼ 0:048. Open circles denote the propagator obtained from the
original gauge field configurations whereas the (red) filled squares denote the propagator following the removal of center vortices.
Zðq2Þ is renormalized to one at the largest accessible momentum point.

FIG. 6 (color online). The Landau-gauge quark propagator
with m0a ¼ 0:048 from the original configurations (open
circles) is compared with the propagator obtained from the
vortex-removed configurations with m0a ¼ 0:024 (filled
squares) selected to match the renormalized quark mass in the
ultraviolet regime.
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The mass function does not undergo a multiplicative
renormalization, as described in Sec. III. However, remov-
ing the center vortices has significantly increased the run-
ning mass as displayed in the ultraviolet regime of the mass
function. An alternative analysis is to compare full and
vortex-removed results with bare quark masses adjusted to
provide matched running quark masses. Figure 6 illustrates
the persistent nature of the mass function under vortex
removal. In this case we see that removing the vortices
suppressesMðq2Þ near zero four-momentum by about 15%
compared to the full configurations, weakening—but by no
means eliminating—strong infrared enhancement. Either
way, there is still plenty of dynamical mass generation.

To further explore the infrared nature of the quark mass
function we turn our focus to the value of the mass function
at the smallest nontrivial momentum available on our
lattice, q2min ¼ 0:10 GeV2. Figure 7 compares the mass

function at q2min for a variety of bare quark masses, m0.

In the left-hand plot,Mðq2minÞ is compared directly with the

input bare quark mass, whereas the right hand plot com-
paresMðq2minÞwith renormalized quark masses,mq defined

at q ¼ 3:0 GeV. Linear fits are sufficient to describe the
data and indicate significant dynamical mass generation in
the chiral limit.

In the early days of Dyson-Schwinger studies of QCD,
D�SB was attributed to the interaction strength in the
quark sector provided by an effective 1-gluon exchange.
Although it is now clear [43] that vertex corrections play an
important role in the quark IR sector, it is unlikely that a
loss of gluonic interaction strength (as displayed by the full
gluon propagator) goes unnoticed with regard to D�SB.
On the basis of our findings above, it is therefore interest-
ing to study the effect of center vortex removal on the
Landau-gauge gluon propagator.

As far as the full gluon propagator, Dðq2Þ, is concerned,
it is known to be infrared enhanced, but finite at zero four-
momentum [44–47]. This can be seen in Fig. 8 from the
gluon dressing function, q2Dðq2Þ of the Landau-gauge
gluon propagator. At high momenta, the dressing function
logarithmically decreases with momentum, while it is
enhanced at intermediate momenta with a maximum near
1 GeV. The turnover indicates a violation of positivity, as
explicitly shown in Ref. [28–30]. The same picture was
found in full QCD with light sea quarks [30,48]. Also
shown in Fig. 8 is the dressing function upon vortex

FIG. 7 (color online). Mass function at the smallest nontrivial momentum available on our lattice, Mðq2minÞ, for a variety of bare
quark masses, m0. Open circles denote the mass function obtained from the original gauge field configurations whereas the (red) filled
squares denote the mass function following the removal of center vortices. Original and vortex-removed results are compared for equal
bare quark masses (left) and equal renormalized quark masses, mq, at q ¼ 3:0 GeV (right). The lines indicate linear fits to the data.

FIG. 8 (color online). The gluon propagator multiplied by q2

(gluon dressing function) such that the large momentum value
approaches a constant. The data presented here have been
cylinder cut. Open circles denote results from the original
untouched gauge fields while (red) full squares report the propa-
gator after removing center vortices.
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removal. As for the gauge group SU(2) [49,50], we find
that the infrared enhancement is largely suppressed when
center vortices are removed. This is particularly remark-
able in the light of our previous findings: vortex removal
strongly reduces the gluonic interactions strength, but dy-
namical mass generation is largely unaffected.

On a final note, we have also investigated the role of
center vortices defined using Laplacian center gauge
(LCG) [51], where the Laplacian gauge construction re-
moves the gauge-fixing ambiguity. While vortices defined
this way do account for the full string tension, the vortex

density diverges in the continuum limit [23]. On a practical
side, there is an abundance of LCG vortices in the vacuum.
Upon removing these vortices the configurations become
extremely rough.
While the flattening of the renormalized wave-function

renormalization function highlighted in Fig. 5 is observed
with larger statistical fluctuations, the mass function re-
vealed following LCG-vortex removal bares little resem-
blance to the original mass function. It is also dominated by
noise at all distance scales as illustrated in Fig. 9, where the
scale has been adjusted to accommodate the results.
Still, one might be interested in examining the infrared

behavior of the mass function as one approaches the chiral
limit. Figure 10 illustrates the mass function at the smallest
nontrivial momentum,Mðq2minÞ, for a variety of bare quark

masses, m0. Open circles denote the mass function ob-
tained from the original gauge field configurations whereas
the filled squares denote the mass function following the
removal of LCG center vortices. Original and vortex-
removed results are compared for equal bare quark masses
in the left plot and equal renormalized quark masses,mq, at

q ¼ 3:0 GeV in the right plot. Figure 11 illustrates the
LCG-vortex-removed data for equal renormalized quark
masses, mq, at the largest momentum explored, q ¼
3:8 GeV.
As in Fig. 7, the lines indicate linear fits to the data. Of

particular interest is whether the trend of the LCG-vortex-
removed data, when plotted as a function of the renormal-
ized quark mass, is consistent with the restoration of chiral
symmetry in the chiral limit; i.e. Mðq2minÞ ¼ 0 at mq ¼ 0.

The dot-dash curves in Figs. 10 and 11 illustrate linear fits
to the LCG-vortex-removed points while the fine dash
curve extrapolates the trend revealed by the four heaviest

FIG. 9 (color online). Landau-gauge quark propagator for
m0a ¼ 0:048. Open circles denote the propagator obtained
from the original gauge field configurations whereas the (red)
filled squares denote the propagator following the removal of
center vortices identified in Laplacian center gauge.

FIG. 10 (color online). Mass function at the smallest nontrivial momentum available on our lattice, Mðq2minÞ, for a variety of bare
quark masses, m0. Open circles denote the mass function obtained from the original gauge field configurations whereas the (red) filled
squares denote the mass function following the removal of LCG center vortices. Original and vortex-removed results are compared for
equal bare quark masses (left) and equal renormalized quark masses, mq, at q ¼ 3:0 GeV (right). Lines indicate linear fits to the data

as described in the text.
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mass points. In either case, there is no evidence of a
restoration of chiral symmetry in the LCG-vortex-removed
mass function.

V. DISCUSSION

Using the SU(3) vortex picture defined by means of the
mesonic version of the maximal center gauge [37,38] we
have been able to construct a nonconfining version of
QCD. As in the case of SU(2) gauge theory, an inspection
of the gluonic dressing function shows a strong decline in
the gluonic interaction strength. From this we might expect
chiral symmetry restoration as well as deconfinement.

In contrast to this expectation, we find that the removal
of center vortices from our configurations has done little
to interfere with chiral symmetry breaking, as seen by
the persistent infrared enhancement of the quark mass

function. The analogy to the SU(2) gauge group [33] is
thus also broken: in SU(2), vortex removal implies the
restoration of chiral symmetry [22–24].
One might conclude then, that the SU(2)

confinement/D�SB mechanism is in some essential way
different from that in SU(3), but we stress that the key to
SU(3) center vortex matter might not have been found yet,
i.e., the way that we have defined the SU(3) vortices is
perhaps deficient. In particular, the string tension vanishes
on vortex-removed configurations, but only around two
thirds of the full string tension is recovered on vortex-
only configurations.
In SU(2) gauge theory the center vortex picture neatly

decomposes the short-range from the long-range features
of the gauge theory. This is not what we have observed in
the SU(3) theory. Whether the phenomenon of D�SB
disentangles from quark confinement for the SU(3) gauge
group or whether an improved definition of SU(3) vortex
texture would recombine them needs further investigation.
Yet our findings offer the intriguing possibility to sepa-
rately trace out the impact of confinement and the impact
of D�SB on hadronic observables.
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