9 research outputs found

    On the equation of state of Dark Energy

    Full text link
    The formalism in order to obtain the Dark Energy equation of state is extended to non-flat universes and we consider the inequalities that must be satisfied by Phantom Dark Energy in this case. We show that due to a non-vanishing spatial curvature satisfying the observational bounds, the uncertainty on the determination of the Dark Energy equation of state parameter ww, when it is taken constant, can be significant and that it is minimal for some redshift zcr∌3z_{cr}\sim 3. We consider the potential of future measurements of the gravitational waves emitted by binaries at high redshifts z>zcrz>z_{cr} to reduce this uncertainty. Results obtained here should also be relevant for a weakly varying equation of state with w≈−1w\approx -1.Comment: 11 pages, 4 figures;typo corrected, final version to appear in Phys. Lett.

    Scalar-Tensor Models of Normal and Phantom Dark Energy

    Get PDF
    We consider the viability of dark energy (DE) models in the framework of the scalar-tensor theory of gravity, including the possibility to have a phantom DE at small redshifts zz as admitted by supernova luminosity-distance data. For small zz, the generic solution for these models is constructed in the form of a power series in zz without any approximation. Necessary constraints for DE to be phantom today and to cross the phantom divide line p=−ρp=-\rho at small zz are presented. Considering the Solar System constraints, we find for the post-Newtonian parameters that ÎłPN<1\gamma_{PN}<1 and ÎłPN,0≈1\gamma_{PN,0}\approx 1 for the model to be viable, and ÎČPN,0>1\beta_{PN,0}>1 (but very close to 1) if the model has a significantly phantom DE today. However, prospects to establish the phantom behaviour of DE are much better with cosmological data than with Solar System experiments. Earlier obtained results for a Λ\Lambda-dominated universe with the vanishing scalar field potential are extended to a more general DE equation of state confirming that the cosmological evolution of these models rule them out. Models of currently fantom DE which are viable for small zz can be easily constructed with a constant potential; however, they generically become singular at some higher zz. With a growing potential, viable models exist up to an arbitrary high redshift.Comment: 30 pages, 4 figures; Matches the published version containing an expanded discussion of various point

    On Some Properties of Dark Energy

    No full text
    Les rĂ©sultats des observations cosmologiques rĂ©alisĂ©es Ă  la charniĂšre du siĂšcle (SN1A, CMB, BAO) montrent que contrairement aux prĂ©visions du modĂšle standard, l'expansion de l'Univers est actuellement en train de s'accĂ©lĂ©rer. Pour rendre compte de ce phĂ©nomĂšne, un composant inconnu dĂ©nommĂ© "Ă©nergie noire" (Dark Energy) a Ă©tĂ© introduit soit directement comme un fluide de pression nĂ©gative, soit indirectement en modifiant la RelativitĂ© gĂ©nĂ©rale. AprĂšs avoir prĂ©sentĂ© le cadre gĂ©nĂ©ral de la description de l'Univers, ainsi que le modĂšle cosmologique standard actuellement acceptĂ©, la prĂ©sente thĂšse Ă©tudie les interactions possibles entre l'Ă©nergie noire et une Ă©ventuelle courbure de l'espace, en s'intĂ©ressant plus particuliĂšrement aux cas oĂč l'incertitude sur la courbure peut falsifier la nature "fantĂŽme" de cette Ă©nergie noire. Dans un deuxiĂšme temps, la possibilitĂ© d'obtenir un comportement de type Ă©nergie noire au moyen d'une modification de la RelativitĂ© gĂ©nĂ©rale est abordĂ©e en faisant appel aux thĂ©ories scalaire-tenseur. Les conditions gĂ©nĂ©rales de viabilitĂ© de ces thĂ©ories sont prĂ©sentĂ©es, ainsi que les conditions d'existence d'Ă©nergie noire, normale et fantĂŽme. Enfin la possibilitĂ© de mettre en Ă©vidence cette Ă©nergie noire d'origine scalaire-tenseur par des mesures dans le SystĂšme solaire est Ă©tudiĂ©e en utilisant le formalisme de l'analyse post-newtonienne paramĂ©trĂ©e.The results of the cosmological observations at the turn of the century (SN1a, CMB, BAO) show that, in contrast to the predictions of the standard model, the Universe expansion is presently accelerating. To account for this fact, an unknown component dubbed "dark energy" was introduced either directly as a fluid with negative pressure, or indirectly as a modification of General Relativity.After the presentation of the general frame of the Universe description, and of the presently accepted cosmological standard model, we study the interactions between dark energy and a possible spatial curvature, with special attention to the cases where the curvature uncertainty may falsify the phantom nature of dark energy. In a second step we consider a modification of General Relativity, the Scalar-Tensor theories, as a way to generate dark energy. The general viability conditions for these theories are presented, as well as the conditions for the presence of normal and phantom dark energy. In particular we study the possibility to detect this Scalar-Tensor dark energy with measurements within the Solar System using the Parametrised Post-Newtonian formalism

    On Some Properties of Dark Energy

    No full text
    Les rĂ©sultats des observations cosmologiques rĂ©alisĂ©es Ă  la charniĂšre du siĂšcle (SN1A, CMB, BAO) montrent que contrairement aux prĂ©visions du modĂšle standard, l'expansion de l'Univers est actuellement en train de s'accĂ©lĂ©rer. Pour rendre compte de ce phĂ©nomĂšne, un composant inconnu dĂ©nommĂ© "Ă©nergie noire" (Dark Energy) a Ă©tĂ© introduit soit directement comme un fluide de pression nĂ©gative, soit indirectement en modifiant la RelativitĂ© gĂ©nĂ©rale. AprĂšs avoir prĂ©sentĂ© le cadre gĂ©nĂ©ral de la description de l'Univers, ainsi que le modĂšle cosmologique standard actuellement acceptĂ©, la prĂ©sente thĂšse Ă©tudie les interactions possibles entre l'Ă©nergie noire et une Ă©ventuelle courbure de l'espace, en s'intĂ©ressant plus particuliĂšrement aux cas oĂč l'incertitude sur la courbure peut falsifier la nature "fantĂŽme" de cette Ă©nergie noire. Dans un deuxiĂšme temps, la possibilitĂ© d'obtenir un comportement de type Ă©nergie noire au moyen d'une modification de la RelativitĂ© gĂ©nĂ©rale est abordĂ©e en faisant appel aux thĂ©ories scalaire-tenseur. Les conditions gĂ©nĂ©rales de viabilitĂ© de ces thĂ©ories sont prĂ©sentĂ©es, ainsi que les conditions d'existence d'Ă©nergie noire, normale et fantĂŽme. Enfin la possibilitĂ© de mettre en Ă©vidence cette Ă©nergie noire d'origine scalaire-tenseur par des mesures dans le SystĂšme solaire est Ă©tudiĂ©e en utilisant le formalisme de l'analyse post-newtonienne paramĂ©trĂ©e.The results of the cosmological observations at the turn of the century (SN1a, CMB, BAO) show that, in contrast to the predictions of the standard model, the Universe expansion is presently accelerating. To account for this fact, an unknown component dubbed "dark energy" was introduced either directly as a fluid with negative pressure, or indirectly as a modification of General Relativity.After the presentation of the general frame of the Universe description, and of the presently accepted cosmological standard model, we study the interactions between dark energy and a possible spatial curvature, with special attention to the cases where the curvature uncertainty may falsify the phantom nature of dark energy. In a second step we consider a modification of General Relativity, the Scalar-Tensor theories, as a way to generate dark energy. The general viability conditions for these theories are presented, as well as the conditions for the presence of normal and phantom dark energy. In particular we study the possibility to detect this Scalar-Tensor dark energy with measurements within the Solar System using the Parametrised Post-Newtonian formalism.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Quelle progression dans l’enseignement de l’énergie de l’école au lycĂ©e ? Une analyse des programmes et des manuels

    No full text
    Des travaux rĂ©cents en didactique des sciences ont renouvelĂ© la question de l’enseignement de l’énergie en pointant la nĂ©cessitĂ© d’une progression tout au long de la scolaritĂ©. En outre, on assiste, en France comme dans de nombreux autres pays, Ă  une Ă©volution de l’enseignement des sciences qui intĂšgre toujours plus explicitement la question des liens sciences-sociĂ©tĂ©. Les enjeux Ă©ducatifs liĂ©s Ă  l’énergie sont donc Ă  la fois de construire progressivement le concept scientifique mais aussi d’éduquer Ă  l’énergie dans une perspective de dĂ©veloppement durable. Comment se positionnent Ă  cet Ă©gard les programmes et les manuels français du primaire et du secondaire ? Quels choix de transposition didactique opĂšrent-ils ? Dans cet article, nous analysons ces programmes et une sĂ©lection de manuels. Dans ses grandes lignes, la progression proposĂ©e apparaĂźt conforme Ă  ce qui est recommandĂ© dans la littĂ©rature : le principe de conservation fait figure de point d’aboutissement et les diffĂ©rents aspects de l’énergie nĂ©cessaires pour le comprendre sont introduits progressivement Ă  partir du primaire. Cependant, la terminologie employĂ©e n’offre pas toujours les conditions pour une diffĂ©rentiation claire de ces diffĂ©rents aspects. De plus, plusieurs questions souvent dĂ©battues dans la littĂ©rature semblent ĂȘtre ignorĂ©es : entrĂ©e par les transformations ou les transferts, place de la conception substantialiste, mise en avant de la fonction d’unification, rupture entre les conceptions scientifique et sociĂ©tale. Nous discutons de l’importance de prendre en charge ces diffĂ©rents points pour permettre l’apprentissage du concept d’énergie.Recent studies in science education have renewed the question of how to teach the concept of energy by pointing out the necessity of a progression throughout schooling. In addition, in France as well as in numerous other countries, science education is addressing more and more explicitly the links between science and society. So the educational issues around teaching energy are both to progressively construct the scientific concept and to “educate to” energy in relation to sustainable development. In this regard, what is the stance of the French programs and textbooks of primary and secondary school? What choices are made in adapting and reformulating scientific knowledge? In this paper, we analyse these programs and a selection of textbooks. Broadly speaking, we found that the proposed progression seems to be in line with what is recommended in the literature: the principle of energy conservation appears as an end point and the different aspects of energy necessary for understanding the concept are introduced progressively, starting from primary school. However, the terminology used does not always provide conditions for a clear differentiation of these different aspects. Furthermore, several questions often debated in the literature are not included: beginning instruction in the concept by explaining energy transformation or transfer, defining the role of the substantialist conception, highlighting the unifying function, or discussing the radical difference between scientific and societal conceptions of energy. This paper discusses the importance of taking these points into account in order to support the learning of the concept of energy

    Quelle progression dans l’enseignement de l’énergie de l’école au lycĂ©e ? Une analyse des programmes et des manuels

    No full text
    International audienceDes travaux rĂ©cents en didactique des sciences ont renouvelĂ© la question de l’enseignement de l’énergie en pointant la nĂ©cessitĂ© d’une progression tout au long de la scolaritĂ©. En outre, on assiste, en France comme dans de nombreux pays, Ă  une Ă©volution de l’enseignement des sciences qui intĂšgre toujours plus explicitement la question des liens sciences-sociĂ©tĂ©. Les enjeux Ă©ducatifs liĂ©s Ă  l’énergie sont donc Ă  la fois de construire progressivement le concept scientifique mais aussi d’éduquer Ă  l’énergie dans une perspective de dĂ©veloppement durable. Comment se positionnent Ă  cet Ă©gard les programmes et les manuels français du primaire et du secondaire ? Quels choix de transposition didactique opĂšrent-ils ? Dans cet article, nous analysons ces programmes et une sĂ©lection de manuels. Dans ses grandes lignes, la progression proposĂ©e apparaĂźt conforme Ă  ce qui est recommandĂ© dans la littĂ©rature : le principe de conservation fait figure de point d’aboutissement et les diffĂ©rents aspects de l’énergie nĂ©cessaires pour le comprendre sont introduits progressivement Ă  partir du primaire. Cependant, la terminologie employĂ©e n’offre pas toujours les conditions pour une diffĂ©rentiation claire de ces diffĂ©rents aspects. De plus, plusieurs questions dĂ©battues dans la littĂ©rature semblent ĂȘtre ignorĂ©es : entrĂ©e par les transformations ou les transferts, place de la conception substantialiste, mise en avant de la fonction d’unification, rupture entre les conceptions scientifique et sociĂ©tale. Nous discutons de l’importance de prendre en charge ces diffĂ©rents points pour permettre l’apprentissage du concept d’énergie

    Énergies

    No full text
    L’énergie est un thĂšme mobilisĂ© en biologie, en chimie, en gĂ©ologie, en physique et en technologie. En outre, l’énergie intĂ©resse Ă©galement les champs investis par les questions socialement vives (la consommation et les Ă©conomies d’énergie, etc.) ainsi que les domaines de l’éducation Ă  la santĂ© (avec les notions de calories, d’effort physique, de bilan, etc.), au dĂ©veloppement durable (ressource Ă©nergĂ©tique, rĂ©chauffement climatique, Ă©nergie renouvelable ou non-renouvelable, etc.). Cependant, il y a fort Ă  parier que derriĂšre un mĂȘme terme, se cachent des concepts diffĂ©rents selon les disciplines, les questions posĂ©es, les phĂ©nomĂšnes Ă©tudiĂ©s. Par ailleurs l’énergie est un des grands objectifs d’enseignement des sciences (thĂšme de convergence au collĂšge, Enseignement IntĂ©grĂ© de Science et de Technologie). Cette importance donnĂ©e Ă  l’énergie a connu des variations au fil des changements de programme. ParallĂšlement les Ă©tudes didactiques sur l’enseignement du concept de l’énergie ont connu aussi des Ă©volutions, tant dans leur quantitĂ© que dans leur angle d’attaque. L’objet de ce numĂ©ro est de faire l’inventaire des recherches actuelles, et de comparer les significations attachĂ©es Ă  ce terme dans les champs disciplinaires scientifiques ou dans les « Ă©ducations Ă  » qui le mobilisent, ainsi que les modes d’approche didactique. Nous espĂ©rons ainsi Ă©largir les horizons des diffĂ©rentes disciplines et amĂ©liorer la cohĂ©rence des modes de prĂ©sentation des concepts en jeu, dans le parcours scolaire des Ă©lĂšves. Energy is a topic very frequently used in the fields of biology, chemistry, geology, physics and technology. Moreover, energy also concerns many domains in the area of socio-scientific issues (energy uses and economies, etc.), as well as health education (with the notions of calories, physical effort, balance, etc.) or sustainable development (energy resources, global heating, renewable or not-renewable energy, etc.). Nevertheless, you can be sure that behind the same term, are hidden different concepts depending on the disciplines, the questions, and the phenomena that are studied. Moreover, energy is a major teaching objective in science instruction (‘themes de convergence’ at lower secondary school, Science and Technology Integrated Instruction). This importance devoted to energy teaching has varied throughout the changes in curricula. Similarly, science education studies about energy teaching have also evolved, both concerning their number and their approach. The aim of this issue is to inventory the current trend of research, and to compare the meanings linked to this term ‘energy’ in the scientific disciplinary fields or in the ‘education to’ that use it, together with the didactical approaches. We hope in this manner widen the scopes of different disciplines, and strengthen the coherence of the presentation of these concepts, in the student school pathways
    corecore