6 research outputs found

    A schematic sampling protocol for contaminant monitoring in raptors

    Get PDF
    Birds of prey, owls and falcons are widely used as sentinel species in raptor biomonitoring programmes. A major current challenge is to facilitate large-scale biomonitoring by coordinating contaminant monitoring activities and by building capacity across countries. This requires sharing, dissemination and adoption of best practices addressed by the Networking Programme Research and Monitoring for and with Raptors in Europe (EURAPMON) and now being advanced by the ongoing international COST Action European Raptor Biomonitoring Facility. The present perspective introduces a schematic sampling protocol for contaminant monitoring in raptors. We provide guidance on sample collection with a view to increasing sampling capacity across countries, ensuring appropriate quality of samples and facilitating harmonization of procedures to maximize the reliability, comparability and interoperability of data. The here presented protocol can be used by professionals and volunteers as a standard guide to ensure harmonised sampling methods for contaminant monitoring in raptors

    A review of constraints and solutions for collecting raptor samples and contextual data for a European Raptor Biomonitoring Facility

    Get PDF
    The COST Action ‘European Raptor Biomonitoring Facility’ (ERBFacility) aims to develop pan-European raptor biomonitoring in support of better chemicals management in Europe, using raptors as sentinel species. This presents a significant challenge involving a range of constraints that must be identified and addressed. The aims of this study were to: (1) carry out a comprehensive review of the constraints that may limit the gathering in the field of raptor samples and contextual data, and assess their relative importance across Europe; and (2) identify and discuss possible solutions to the key constraints that were identified. We applied a participatory approach to identify constraints and to discuss feasible solutions. Thirty-one constraints were identified, which were divided into four categories: legal, methodological, spatial coverage, and skills constraints. To assess the importance of the constraints and their possible solutions, we collected information through scientific workshops and by distributing a questionnaire to stakeholders in all the countries involved in ERBFacility. We obtained 74 answers to the questionnaire, from 24 of the 39 COST participating countries. The most important constraints identified were related to the collection of complex contextual data about sources of contamination, and the low number of existing raptor population national/regional monitoring schemes and ecological studies that could provide raptor samples. Legal constraints, such as permits to allow the collection of invasive samples, and skills constraints, such as the lack of expertise to practice necropsies, were also highlighted. Here, we present solutions for all the constraints identified, thus suggesting the feasibility of establishing a long-term European Raptor Sampling Programme as a key element of the planned European Raptor Biomonitoring Facility.This paper is based on work from COST Action European Raptor Biomonitoring Facility (COST Action CA16224) supported by COST (European Cooperation in Science and Technology), including a grant for a short-term scientific mission awarded to the lead author. COST is funded by the Horizon 2020 Framework Programme of the European Union. Silvia Espín was financially supported by Ministerio de Ciencia, Innovación y Universidades (Juan de la Cierva-Incorporación postdoctoral contract, IJCI-2017-34653).Peer reviewe

    A review of constraints and solutions for collecting raptor samples and contextual data for a European raptor biomonitoring facility

    Get PDF
    The COST Action ‘European Raptor Biomonitoring Facility’ (ERBFacility) aims to develop pan-European raptor biomonitoring in support of better chemicals management in Europe, using raptors as sentinel species. This presents a significant challenge involving a range of constraints that must be identified and addressed. The aims of this study were to: (1) carry out a comprehensive review of the constraints that may limit the gathering in the field of raptor samples and contextual data, and assess their relative importance across Europe; and (2) identify and discuss possible solutions to the key constraints that were identified. We applied a participatory approach to identify constraints and to discuss feasible solutions. Thirty-one constraints were identified, which were divided into four categories: legal, methodological, spatial coverage, and skills constraints. To assess the importance of the constraints and their possible solutions, we collected information through scientific workshops and by distributing a questionnaire to stakeholders in all the countries involved in ERBFacility. We obtained 74 answers to the questionnaire, from 24 of the 39 COST participating countries. The most important constraints identified were related to the collection of complex contextual data about sources of contamination, and the low number of existing raptor population national/regional monitoring schemes and ecological studies that could provide raptor samples. Legal constraints, such as permits to allow the collection of invasive samples, and skills constraints, such as the lack of expertise to practice necropsies, were also highlighted. Here, we present solutions for all the constraints identified, thus suggesting the feasibility of establishing a long-term European Raptor Sampling Programme as a key element of the planned European Raptor Biomonitoring Facility

    Vulture conservation: the case for urgent action

    Get PDF
    Commentary.Peer reviewe

    First results from the releases of Cinereous Vultures (Aegypius monachus) aiming at re-introducing the species in Bulgaria – the start of the establishment phase 2018–2022

    Get PDF
    The current work presents the preliminary results of the Cinereous Vulture (Aegypius monachus) releases in the Balkan Mountains in 2018–2022, aiming at the species re-introduction in Bulgaria, where it was listed as locally extinct since 1985. The first imports and releases of Cinereous Vultures in Bulgaria started in 2018. Until mid-2022, 72 individuals were released in the Eastern Balkan Mountains (Kotlenska Planina SPA and Sinite Kamani Nature Park) and Vrachanski Balkan Nature Park. Of them, 63 immatures imported from Spain were released from aviaries and nine juveniles captive-bred in European zoos were released by hacking (fledging from an artificial nest). We compared the success in survival and establishment between the different release sites and methods used to adjust the ongoing technics and tactics and to support knowledge improvement for future similar projects.From the nine Cinereous Vultures released by hacking, the results were as follows: 1.00 fledging success, but only 0.22 survival in the first six months – combined period of acclimation, first migration and the first winter. All survivors from that period reached maturity into the wild, but all emigrated from the release site and settled elsewhere.Of the 63 individuals released by aviaries, 32 individuals were released in the Eastern Balkan Mountains (18 individuals are still alive – 0.56 survival; 14 individuals settled in the area, which accounts for 0.44 of all released birds and 0.78 of the survivors). Thirty-one individuals were released in Vrachanski Balkan Nature Park (23 individuals are still alive – 0.74 survival; 22 individuals settled in the area – 0.71 of all released birds and 0.96 of the survivors). Based only on aviary method comparison, the settling of the individuals in the release area was alike in the two sites. However, the Vrachanski Balkan Nature Park performed better in survival – both in acclimation and establishment periods.While comparing the release methods – hacking and release from the aviary – the following results were observed: the survival rate during acclimation was 0.86. Due to more considerable losses during the first migration and dispersal in the individuals released by hacking, the survival rate of 0.22 was significantly lower compared to 0.73 for the birds released from the aviary. Additionally, in both methods, a similar pattern in the first winter and spring migration dispersal was observed. Although the survival was equal in the released-by-hacking or aviary birds after the first year onwards, it is essential to note that the emigration of the hacked birds from the release site was 1.00. In comparison, the birds released from aviaries largely remained and settled in the release area (> 0.77 of the survivors). The cost of release and related acclimation, settling, dispersal and the first winter was the greatest: 0.12–0.17 per period, or cumulatively, it was about 0.27. Survival increased and stabilised to > 0.90 after the first year in the wild and reached nearly 1.00 after two years in the wild onwards.Two distinct nuclei of the Cinereous Vulture were established along the Balkan Mountains – the Eastern Balkan Mountains with 18–23 individuals and four formed pairs using a territory of about 642.74 km2 – 95% home range and 85.72 km2 – 50% core area with center being the town of Kotel; and Vrachanski Balkan Nature Park with present 23–29 individuals, of which 2–3 pairs formed so far, using a territory of about 1,143.66 km2 – 95% home range and 22.89 km2 – 50% core area with center being the village of Zgorigrad. The species readily accepted breeding in artificial nest platforms built by professional arborists on different tree species – oak, beech, sycamore and pine. The only naturally built nests were on the ground (n = 2) (unsuccessful) and in Scots Pine (n = 1) (successful). In 2021 and 2022, in each of the two sites, the first successful reproductions were recorded, which marked the return of the Cinereous Vulture as breeding species – 28 years after the last occasional record of a single breeding pair in the country and 36 years after it was officially listed as locally extinct in Bulgaria
    corecore