71 research outputs found

    A framework for significance analysis of gene expression data using dimension reduction methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most popular methods for significance analysis on microarray data are well suited to find genes differentially expressed across predefined categories. However, identification of features that correlate with continuous dependent variables is more difficult using these methods, and long lists of significant genes returned are not easily probed for co-regulations and dependencies. Dimension reduction methods are much used in the microarray literature for classification or for obtaining low-dimensional representations of data sets. These methods have an additional interpretation strength that is often not fully exploited when expression data are analysed. In addition, significance analysis may be performed directly on the model parameters to find genes that are important for any number of categorical or continuous responses. We introduce a general scheme for analysis of expression data that combines significance testing with the interpretative advantages of the dimension reduction methods. This approach is applicable both for explorative analysis and for classification and regression problems.</p> <p>Results</p> <p>Three public data sets are analysed. One is used for classification, one contains spiked-in transcripts of known concentrations, and one represents a regression problem with several measured responses. Model-based significance analysis is performed using a modified version of Hotelling's <it>T</it><sup>2</sup>-test, and a false discovery rate significance level is estimated by resampling. Our results show that underlying biological phenomena and unknown relationships in the data can be detected by a simple visual interpretation of the model parameters. It is also found that measured phenotypic responses may model the expression data more accurately than if the design-parameters are used as input. For the classification data, our method finds much the same genes as the standard methods, in addition to some extra which are shown to be biologically relevant. The list of spiked-in genes is also reproduced with high accuracy.</p> <p>Conclusion</p> <p>The dimension reduction methods are versatile tools that may also be used for significance testing. Visual inspection of model components is useful for interpretation, and the methodology is the same whether the goal is classification, prediction of responses, feature selection or exploration of a data set. The presented framework is conceptually and algorithmically simple, and a Matlab toolbox (Mathworks Inc, USA) is supplemented.</p

    Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation

    Get PDF
    Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression

    Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation.

    Get PDF
    Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression.We thank K. Tasken, J. Saarela and the NCMM at the University of Oslo (UiO), S. Kanse (UiO) and B. Smedsrød (UiT), for access to facilities. We acknowledge Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital (Bergen, Norway) and R. Hovland for karyotyping, FISH, translocation and DNA analyses of AML and MDS patients included in this study, and Department of Pathology, Oslo University Hospital (Oslo, Norway) and S. Spetalen for deep sequencing. L.M. Gonzalez, L.T. Eliassen, X. Zhang, M. Ristic and other members of L. Arranz group, O.P. Rekvig, R. Doohan, L.D. Håland, M.I. Olsen, A. Urbanucci, J. Landskron, K.B. Larsen, R.A. Lyså and UiT Advanced Microscopy Core Facility, UiO and UiT Comparative Medicine Units, for assistance. P. Garcia and S. Mendez-Ferrer for providing NRASG12D and Nes-gfp mice, respectively. P. Garcia and L. Kurian for careful reading of the manuscript. E. Tenstad (Science Shaped) for artwork in schematics. We would also like to thank the AML and MDS patients, and healthy volunteers, who donated biological samples. Our work is supported by a joint meeting grant of the Northern Norway Regional Health Authority, the University Hospital of Northern Norway (UNN) and UiT (Strategisk-HN06-14), Young Research Talent grants from the Research Council of Norway, (Stem Cell Program, 247596; FRIPRO Program, 250901), and grants from the Norwegian Cancer Society (6765150), the Northern Norway Regional Health Authority (HNF1338-17), and the Aakre-Stiftelsen Foundation (2016/9050) to L.A. Vav-Cre NRASG12D experiments were supported by NIH grant R01CA152108 to J.Z.S

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes

    Genome-Wide Profile of Pleural Mesothelioma versus Parietal and Visceral Pleura: The Emerging Gene Portrait of the Mesothelioma Phenotype

    Get PDF
    Malignant pleural mesothelioma is considered an almost incurable tumour with increasing incidence worldwide. It usually develops in the parietal pleura, from mesothelial lining or submesothelial cells, subsequently invading the visceral pleura. Chromosomal and genomic aberrations of mesothelioma are diverse and heterogenous. Genome-wide profiling of mesothelioma versus parietal and visceral normal pleural tissue could thus reveal novel genes and pathways explaining its aggressive phenotype.Well-characterised tissue from five mesothelioma patients and normal parietal and visceral pleural samples from six non-cancer patients were profiled by Affymetrix oligoarray of 38 500 genes. The lists of differentially expressed genes tested for overrepresentation in KEGG PATHWAYS (Kyoto Encyclopedia of Genes and Genomes) and GO (gene ontology) terms revealed large differences of expression between visceral and parietal pleura, and both tissues differed from mesothelioma. Cell growth and intrinsic resistance in tumour versus parietal pleura was reflected in highly overexpressed cell cycle, mitosis, replication, DNA repair and anti-apoptosis genes. Several genes of the “salvage pathway” that recycle nucleobases were overexpressed, among them TYMS, encoding thymidylate synthase, the main target of the antifolate drug pemetrexed that is active in mesothelioma. Circadian rhythm genes were expressed in favour of tumour growth. The local invasive, non-metastatic phenotype of mesothelioma, could partly be due to overexpression of the known metastasis suppressors NME1 and NME2. Down-regulation of several tumour suppressor genes could contribute to mesothelioma progression. Genes involved in cell communication were down-regulated, indicating that mesothelioma may shield itself from the immune system. Similarly, in non-cancer parietal versus visceral pleura signal transduction, soluble transporter and adhesion genes were down-regulated. This could represent a genetical platform of the parietal pleura propensity to develop mesothelioma.Genome-wide microarray approach using complex human tissue samples revealed novel expression patterns, reflecting some important features of mesothelioma biology that should be further explored

    Identifying anti-TNF response biomarkers in ulcerative colitis using a diffusion-based signalling model

    Get PDF
    Motivation Resistance to anti-TNF therapy in subgroups of ulcerative colitis (UC) patients is a major challenge and incurs significant treatment costs. Identification of patients at risk of nonresponse to anti-TNF is of major clinical importance. To date, no quantitative computational framework exists to develop a complex biomarker for the prognosis of UC treatment. Modelling patient-wise receptor to transcription factor (TF) network connectivity may enable personalized treatment. Results We present an approach for quantitative diffusion analysis between receptors and TFs using gene expression data. Key TFs were identified using pandaR. Network connectivities between immune-specific receptor-TF pairs were quantified using network diffusion in UC patients and controls. The patient-specific network could be considered a complex biomarker that separates anti-TNF treatment-resistant and responder patients both in the gene expression dataset used for model development and separate independent test datasets. The model was further validated in rheumatoid arthritis where it successfully discriminated resistant and responder patients to tocilizumab treatment. Our model may contribute to prognostic biomarkers that may identify treatment-resistant and responder subpopulations of UC patients. Availability and implementation Software is available at https://github.com/Amy3100/receptor2tfDiffusion. Supplementary information Supplementary data are available at Bioinformatics Advances online

    Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis.

    Get PDF
    Background - In ulcerative colitis (UC), the molecular mechanisms that drive disease development and patient response to therapy are not well understood. A significant proportion of patients with UC fail to respond adequately to biologic therapy. Therefore, there is an unmet need for biomarkers that can predict patients’ responsiveness to the available UC therapies as well as ascertain the most effective individualised therapy. Our study focused on identifying predictive signalling pathways that predict anti-integrin therapy response in patients with UC. Methods - We retrieved and pre-processed two publicly accessible gene expression datasets (GSE73661 and GSE72819) of UC patients treated with anti-integrin therapies: (1) 12 non-IBD controls and 41 UC patients treated with Vedolizumab therapy, and (2) 70 samples with 58 non-responder and 12 responder UC patient samples treated with Etrolizumab therapy without non-IBD controls. We used a diffusion-based signalling model which is mainly focused on the T-cell receptor signalling network. The diffusion model uses network connectivity between receptors and transcription factors. Results - The network diffusion scores were able to separate VDZ responder and non-responder patients before treatment better than the original gene expression. On both anti-integrin treatment datasets, the diffusion model demonstrated high predictive performance for discriminating responders from non-responders in comparison with ‘nnet’. We have found 48 receptor-TF pairs identified as the best predictors for VDZ therapy response with AUC ≥ 0.76. Among these receptor-TF predictors pairs, FFAR2-NRF1, FFAR2-RELB, FFAR2-EGR1, and FFAR2-NFKB1 are the top best predictors. For Etrolizumab, we have identified 40 best receptor-TF pairs and CD40-NFKB2 as the best predictor receptor-TF pair (AUC = 0.72). We also identified subnetworks that highlight the network interactions, connecting receptors and transcription factors involved in cytokine and fatty acid signalling. The findings suggest that anti-integrin therapy responses in cytokine and fatty acid signalling can stratify UC patient subgroups. Conclusions - We identified signalling pathways that may predict the efficacy of anti-integrin therapy in UC patients and personalised therapy alternatives. Our results may lead to the advancement of a promising clinical decision-making tool for the stratification of UC patients
    corecore