972 research outputs found

    Infrared-active vibron bands associated with rare gas atom dopants isolated in solid parahydrogen

    No full text
    We report high-resolution infrared absorption spectroscopic studies of the dopant-induced Q₁(0) vibron band in solid parahydrogen crystals doped with low concentrations of rare gas atoms. The frequency, lineshape, and integrated absorption coefficient for the rare gas atom-induced Q₁(0) vibron band are measured for Ne, Ar, Kr, and Xe. The observed lineshapes and peak maxima frequencies are sensitive to the H₂ vibrational dependence of the dopant-H₂ isotropic intermolecular potential. Trends observed for Ar, Kr and Xe indicate the vibrational dependence is strong enough for Xe to trap the infrared-active vibron in its first solvation shell while for Ar the vibron remains delocalized. The Ne-induced feature displays a qualitatively different lineshape which is attributed to the weak intramolecular vibrational dependence of the Ne–H₂ intermolecular potential relative to the H₂–H₂ interaction. The lineshapes of the Ar, Kr, and Xe dopant-induced Q₁(0) pure vibrational features agree well with recent first principles calculations

    <sup>14</sup>C AMS at SUERC: improving QA data from the 5 MV tandem AMS and 250 kV SSAMS

    Get PDF
    In 2003, a National Electrostatics Corporation (NEC) 5MV tandem accelerator mass spectrometer was installed at SUERC, providing the radiocarbon laboratory with 14C measurements to 4–5‰ repeatability. In 2007, a 250kV single-stage accelerator mass spectrometer (SSAMS) was added to provide additional 14C capability and is now the preferred system for 14C analysis. Changes to the technology and to our operations are evident in our copious quality assurance data: typically, we now use the 134-position MC-SNICS source, which is filled to capacity. Measurement of standards shows that spectrometer running without the complication of on-line δ13C evaluation is a good operational compromise. Currently, 3‰ 14C/13C measurements are routinely achieved for samples up to nearly 3 half-lives old by consistent sample preparation and an automated data acquisition algorithm with sample random access for measurement repeats. Background and known-age standard data are presented for the period 2003–2008 for the 5MV system and 2007–2008 for the SSAMS, to demonstrate the improvements in data quality

    Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    No full text
    We report infrared spectroscopic studies of H₂ ortho-para (o/p) conversion in solid hydrogen doped with Clatoms at 2 K while the Cl+H₂(v=1)→HCl+H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl₂ precursor molecules. For hydrogen solids with high ortho-H₂ fractional concentrations (Xo=0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant Kcc=1.16(11) min⁻¹ and the process is rate-limited by ortho-H₂ quantum diffusion. For hydrogen crystals with low ortho-H₂ concentrations (Xo=0.03), single-exponential decay of the ortho-H₂ concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl+H₂ reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Validation of Phonon Physics in the CDMS Detector Monte Carlo

    Get PDF
    The SuperCDMS collaboration is a dark matter search effort aimed at detecting the scattering of WIMP dark matter from nuclei in cryogenic germanium targets. The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at achieving a deeper understanding of the performance of the SuperCDMS detectors and aiding the dark matter search analysis. We present results from validation of the phonon physics described in the CDMS-DMC and outline work towards utilizing it in future WIMP search analyses.Comment: 6 Pages, 5 Figures, Proceedings of Low Temperature Detectors 14 Conferenc

    A simple chemical approach to regenerating the strength of thermally damaged glass fibre

    Get PDF
    Process-induced strength loss is a major technical barrier to the effective reuse of thermally recycled glass fibres in composite applications. We have developed a novel approach to effectively restore strength in glass fibres through treatment in alkaline solutions. Glass fibres were treated at elevated temperature and experienced significant strength loss found typically after thermal recycling processes. Different alkaline treatments were then applied to the thermally damaged fibres in an attempt to restore strength which had been lost as a result of the heat conditioning procedure. Results indicated that these treatments were able to generate considerable fibre strength recovery. The degree of strength regeneration was found to be highly dependent on reaction conditions, which were investigated and optimised. The positive effect of these simple chemical treatments demonstrated great potential for facilitating the reuse of thermally recycled glass fibres in composite applications

    Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization.

    Get PDF
    The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis)to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation.C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun

    Projecting Climate Dependent Coastal Flood Risk With a Hybrid Statistical Dynamical Model

    Get PDF
    ABSTRACT: Numerical models for tides, storm surge, and wave runup have demonstrated ability to accurately define spatially varying flood surfaces. However these models are typically too computationally expensive to dynamically simulate the full parameter space of future oceanographic, atmospheric, and hydrologic conditions that will constructively compound in the nearshore to cause both extreme event and nuisance flooding during the 21st century. A surrogate modeling framework of waves, winds, and tides is developed in this study to efficiently predict spatially varying nearshore and estuarine water levels contingent on any combination of offshore forcing conditions. The surrogate models are coupled with a time-dependent stochastic climate emulator that provides efficient downscaling for hypothetical iterations of offshore conditions. Together, the hybrid statistical-dynamical framework can assess present day and future coastal flood risk, including the chronological characteristics of individual flood and wave-induced dune overtopping events and their changes into the future. The framework is demonstrated at Naval Base Coronado in San Diego, CA, utilizing the regional Coastal Storm Modeling System (CoSMoS; composed of Delft3D and XBeach) as the dynamic simulator and Gaussian process regression as the surrogate modeling tool. Validation of the framework uses both in-situ tide gauge observations within San Diego Bay, and a nearshore cross-shore array deployment of pressure sensors in the open beach surf zone. The framework reveals the relative influence of large-scale climate variability on future coastal flood resilience metrics relevant to the management of an open coast artificial berm, as well as the stochastic nature of future total water levels.This work was funded by the Strategic Environmental Research Development Program (DOD/SERDP RC-2644). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. F. J. Mendez, A. Rueda, and L. Cagigal acknowledge the partial funding from the Spanish Ministry of Science and Innovation, project Beach4cast PID2019-107053RB-I00. The authors thank the Scripps Center for Coastal Studies for their efforts to deploy, recover, and process surf zone pressure sensor data used as validation in this study. The authors thank Melisa Menendez for sharing GOW2 hindcast data for Southern California. The authors thank the sea-level rise projection authors for developing and making the sea-level rise projections available, multiple funding agencies for supporting the development of the projections, and the NASA Sea-Level Change Team for developing and hosting the IPCC AR6 Sea-Level Projection Tool

    Optical pumping NMR in the compensated semiconductor InP:Fe

    Full text link
    The optical pumping NMR effect in the compensated semiconductor InP:Fe has been investigated in terms of the dependences of photon energy (E_p), helicity (sigma+-), and exposure time (tau_L) of infrared lights. The {31}P and {115}In signal enhancements show large sigma+- asymmetries and anomalous oscillations as a function of E_p. We find that (i) the oscillation period as a function of E_p is similar for {31}P and {115}In and almost field independent in spite of significant reduction of the enhancement in higher fields. (ii) A characteristic time for buildup of the {31}P polarization under the light exposure shows strong E_p-dependence, but is almost independent of sigma+-. (iii) The buildup times for {31}P and {115}In are of the same order (10^3 s), although the spin-lattice relaxation times (T_1) are different by more than three orders of magnitude between them. The results are discussed in terms of (1) discrete energy spectra due to donor-acceptor pairs (DAPs) in compensated semiconductors, and (2) interplay between {31}P and dipolar ordered indium nuclei, which are optically induced.Comment: 8 pages, 6 figures, submitted to Physical Review
    corecore