115,535 research outputs found

    Ion microprobe mass analysis of lunar samples. Lunar sample program

    Get PDF
    Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples

    Neutron irradiation of Am-241 effectively produces curium

    Get PDF
    Computer study was made on the production of multicurie amounts of highly alpha-active curium 242 from americium 241 irradiation. The information available includes curium 242 yields, curium composition, irradiation data, and production techniques and safeguards

    Inherent-Structure Dynamics and Diffusion in Liquids

    Full text link
    The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lennard-Jones liquid. The approximation of uncorrelated IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST are associated with a hopping mechanism, the condition D ~ D_{0} provides a new way to identify the crossover to hopping. The results suggest that theories of diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR

    Maximum solutions of normalized Ricci flows on 4-manifolds

    Full text link
    We consider maximum solution g(t)g(t), t[0,+)t\in [0, +\infty), to the normalized Ricci flow. Among other things, we prove that, if (M,ω)(M, \omega) is a smooth compact symplectic 4-manifold such that b2+(M)>1b_2^+(M)>1 and let g(t),t[0,)g(t),t\in[0,\infty), be a solution to (1.3) on MM whose Ricci curvature satisfies that Ric(g(t))3|\text{Ric}(g(t))|\leq 3 and additionally χ(M)=3τ(M)>0\chi(M)=3 \tau (M)>0, then there exists an mNm\in \mathbb{N}, and a sequence of points {xj,kM}\{x_{j,k}\in M\}, j=1,...,mj=1, ..., m, satisfying that, by passing to a subsequence, (M,g(tk+t),x1,k,...,xm,k)dGH(j=1mNj,g,x1,,...,,xm,),(M, g(t_{k}+t), x_{1,k},..., x_{m,k}) \stackrel{d_{GH}}\longrightarrow (\coprod_{j=1}^m N_j, g_{\infty}, x_{1,\infty}, ...,, x_{m,\infty}), t[0,)t\in [0, \infty), in the mm-pointed Gromov-Hausdorff sense for any sequence tkt_{k}\longrightarrow \infty, where (Nj,g)(N_{j}, g_{\infty}), j=1,...,mj=1,..., m, are complete complex hyperbolic orbifolds of complex dimension 2 with at most finitely many isolated orbifold points. Moreover, the convergence is CC^{\infty} in the non-singular part of 1mNj\coprod_1^m N_{j} and Volg0(M)=j=1mVolg(Nj)\text{Vol}_{g_{0}}(M)=\sum_{j=1}^{m}\text{Vol}_{g_{\infty}}(N_{j}), where χ(M)\chi(M) (resp. τ(M)\tau(M)) is the Euler characteristic (resp. signature) of MM.Comment: 23 page

    Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme

    Full text link
    I approach the Problem of Time and other foundations of Quantum Cosmology using a combined histories, timeless and semiclassical approach. This approach is along the lines pursued by Halliwell. It involves the timeless probabilities for dynamical trajectories entering regions of configuration space, which are computed within the semiclassical regime. Moreover, the objects that Halliwell uses in this approach commute with the Hamiltonian constraint, H. This approach has not hitherto been considered for models that also possess nontrivial linear constraints, Lin. This paper carries this out for some concrete relational particle models (RPM's). If there is also commutation with Lin - the Kuchar observables condition - the constructed objects are Dirac observables. Moreover, this paper shows that the problem of Kuchar observables is explicitly resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach for nontrivial linear constraints that is also a construction of Dirac observables, I consider theories for which Kuchar observables are formally known, giving the relational triangle as an example. As a second route, I apply an indirect method that generalizes both group-averaging and Barbour's best matching. For conceptual clarity, my study involves the simpler case of Halliwell 2003 sharp-edged window function. I leave the elsewise-improved softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide comments on Halliwell's approach and how well it fares as regards the various facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references. 25 pages, 4 figure

    The origin of phase in the interference of Bose-Einstein condensates

    Get PDF
    We consider the interference of two overlapping ideal Bose-Einstein condensates. The usual description of this phenomenon involves the introduction of a so-called condensate wave functions having a definite phase. We investigate the origin of this phase and the theoretical basis of treating interference. It is possible to construct a phase state, for which the particle number is uncertain, but phase is known. However, how one would prepare such a state before an experiment is not obvious. We show that a phase can also arise from experiments using condensates in Fock states, that is, having known particle numbers. Analysis of measurements in such states also gives us a prescription for preparing phase states. The connection of this procedure to questions of ``spontaneously broken gauge symmetry'' and to ``hidden variables'' is mentioned.Comment: 22 pages 4 figure

    Quantum Cosmological Relational Model of Shape and Scale in 1-d

    Full text link
    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1-d to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues 1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schrodinger interpretation and records theory). 2) In quantum cosmology, such as in the investigation of uniform states, robustness, and the qualitative understanding of the origin of structure formation.Comment: References and some more motivation adde
    corecore