View metadata, citation and similar papers at core.ac.uk

CORE brought to you by

Progress Report: Lunar Sample Program

ION MICROPROBE MASS ANALYSIS OF LUNAR SAMPLES NASA CONTRACT NO. NAS9-11566

> CASE FI Copy C. A. Andersen J. R. Hinthorne

by

APPLIED RESEARCH LABORATORIES HASLER RESEARCH CENTER .95 La Patera Lane, Goleta, CA 93017

#### INTRODUCTION

Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer in partial fulfillment of our proposed lunar sample analysis program. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric (Pb 207/206) age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo 14 soil samples.

Although the primary objective of Contract NAS9-11566 is the analysis of Apollo 14 and 15 lunar material, we have also actively pursued investigations of Apollo 11 and 12, Luna 16, basaltic achrondrites and representative terrestrial basaltic rocks in order to build a reference library of analyses for comparison with the

lunar analyses. Most of these analyses are presented in the tables and figures accompanying this report. The reported analyses are in a preliminary state of quantitative correction and await a final calibration. We do not anticipate large errors, however, and the relative concentrations of an element between different minerals should be fairly accurate. A considerable effort has been made to develop a quantitative method for the ion microprobe mass analyzer and typical results of the method applied to silicates are given in Tables I, II, and III. (New partition functions for Fe I improve the IMMA analysis for this element significantly.) The final calibration of the preliminary lunar data reported here should produce results equivalent to those given in these tables. The quantitative procedure has been described by Andersen (1).

The versatility of the instrument for the quantitative analysis of many different elements in widely different concentration ranges is illustrated in Figure 1 where ion microprobe analyses of crust and vein glasses in 10085/17-17 are compared to whole rock analyses performed by other laboratories using a variety of techniques. The crust glasses are generally considered to be nearly total melts of the breccia and therefore it should be possible to compare the chemistries of the two. The whole rock analyses represent the composite work of eight laboratories where an analytic method was sclected for each individual element. Methods such as neutron activation, spark source mass spectrometry, atomic absorption, optical emission, flame emission, x-ray fluorescense, isotope dilution, and wet chemcial analysis are represented. The vertical spread is laboratory spread while the horizontal spread represents the variation observed with the ion probe between three different glasses within the same rock thin section. Each ion probe analysis represents much less than a

microgram of material. Si was used as an internal standard in these analyses. The correlation over five orders of magnitude of concentration is good enough to confirm the general quantitative method proposed. Some of the discrepancies such as noted for P and Zr might be related to the presence of these elements in highly refractory phases that have not melted completely into the glass.

#### SAMPLES

The ion microprobe investigations were conducted on polished, rock thin sections and on hand selected and mounted free soil particles. The lunar samples analyzed in this report are identified by their standard NASA designations. Thin Sections 14321,23; 14053,15; and 14310,12 prepared by LRL and assigned to this investigation were not usable for radiometric Pb age dating because they were contaminated with common Pb during the thin section polishing procedure.

The basaltic achondrites were supplied by the Smithsonian Institution and are generally discussed by Moore (2) who lists more detailed references. References to the terrestrial rocks are as follows. Oceanite C-112 and trachyte C-116 (3); nephelinite 425 (4); high-Al basalt 4-412 (5); tholeiitic basalt 51-2 and basanite B-1 (6); St. Paul's Rocks peridotite (7); and Disko basalt (8).

The soil particles were hand selected under a stereomicroscope with stainless steel forceps and mounted on Au coated glass slides. The particles were attached by sitting them in a small droplet of white glue. No metallic overcoatings of any type were used in these investigations and the surfaces of the particles were analyzed directly. Surface charge-up on

the insulating particles was eliminated by using a negatively charged primary ion beam (9).

#### DISCUSSION OF RESULTS

The ion microprobe analyses of the lunar material have shown that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddelyite, zirkelite and tranquillityite. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The Pb isotope ratio measurements, the resulting radiometric age dates, and the REE abundance patterns of these phases have been adequately discussed in the renewal proposal ("Quantitative Ion Microprobe Analysis of the Distribution of U, Th, Pb and the KREEP Elements in Returned Lunar Material," C. A. Andersen) that accompanies this progress report.

In accordance with our proposal we have analyzed the surfaces of free particles from Apollo 14 soil in an attempt to find the heavy volatile elements. The mass spectra of these particles have been searched for indications of Hg, Tl, Bi, In, Sn and Pb unsupported by U or Th. To date 75 particles from Samples 14003,2; 14141,35, and 14165,2 have been analyzed with negative results. Of the 75 particles three contained Pb but in each case the Pb was supported by U and Th. Isotope ratios could not be measured accurately because of the low Pb concentrations. In addition, two measurements were made on the surface of the crust glass of Sample 14047,40 and four free soil particles from 12028,68 and 12028,60 were analyzed all with negative results. The absolute detection limit for Pb under the experimental conditions used was approximately 5 x  $10^{-18}$  gms which corresponds

to about 2 x 10<sup>4</sup> atoms in a vertical section approximately ten monolayers thick. The other heavy volatile elements have detection limits within about a factor of five Pb. In with a better detection limit and Hg with the poorer detection limit define the range. No distinctly unusual heavy mass peaks (up to approximately mass 270) were noted in the mass spectra of any of the particles discussed in this report.

In general the trace element contents of the individual. olivine, pyroxene and plagioclase grains in the Apollo 14, 12, and 11 fines materials studied reflect the abundance trends reported for the bulk chemical analyses of these materials (10,11). Figure 2 compares the trace element contents of single olivine and plagioclase phenocrysts from an Apollo 12 basalt with similar minerals from an Apollo 11 basalt and anorthositic-like fragment (12). We have not yet had time to add the Apollo 14 and Luna 16 results to this figure but the data given in the accompanying tables show the following trends. The olivine of Apollo 14 has less Ti, Cr and V than that of Apollo 12 or 11. Li, however, is much enriched and approaches the levels found in the anorthosticlike fragment. The olivine in this fragment appears to be enriched in Na, K, B and Li compared to the olivine grains in Apollo 14, 12, or ll material. The plagioclase of Apollo 14 appears to be enriched in K, Na and Ba and depleted in P, Ti, and Zr compared to Apollo 12 and 11.

The olivine of Luna 16 shows an enrichment of Ca and Ti over other lunar rocks. Li is enriched over Apollo 12 and 11 but is depleted relative to Apollo 14 and the anorthositic fragment. The B, Na and K levels in the Luna 16 olivine are greater than those of Apollo 14, 12, and 11 and approach or exceed the levels found in the anorthositic fragment. V and Cr are lower in the Luna 16 olivine than in any of the other lunar rocks. The Luna 16

plagioclase is generally depleted in Li, Sr, Y and Zr. Ti is depleted to the levels observed in Apollo 14 material and the anorthositic fragment.

Figure 3 illustrates the element distribution across a zoned pyroxene grain from Apollo 12. The grain has a core of pigeonite surrounded by a sub-calcic augite that is rimmed with a pyroxene of an intermediate composition. It is observed that practically all the trace elements analyzed have preferentially entered the augite phase. Sr is the only exception noted. The pyroxene data of Apollo 14 and Luna 16 show similar concentration levels. Li and V are generally enriched in the pyroxenes measured from these two sample areas, however, and B is greatly enriched in some Luna 16 pyroxenes. Zr and Ba are depleted compared to Apollo 12 and 11 pyroxenes. (The Cr concentration at the 1000 ppm level in Figure 3 has been mislabled Co).

The glasses that have been analyzed generally reflect the chemical trends noted in the bulk rock analyses. Apollo 14 and 12 glasses appear to be enriched and Luna 16 glasses depleted in KREEP component. B is more concentrated in Apollo 14 and Luna 16 glasses. Li and Na are generally depleted in Luna 16 and V is depleted in both Luna 16 and Apollo 14 glasses.

Approximately 100 grains and fragments of Luna 16 material in polished thin Sections G308 and A317 were analyzed for U, Th, and Pb in hopes of finding some of the accessory mineral phases known to concentrate these elements in order to age date the material. We were not able to locate such a phase.

10-18-71 CAA:dd

## REFERENCES

Ľ

.

7

| 1.  | C. A. Andersen, Sixth Natl. Conf. Electron Probe Analysis,<br>Pittsburgh, 1971.                                                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | C. B. Moore, "Researches on Meteorites", C. B. Moore, Ed.<br>(Wiley, N.Y., 1962) pp. 164.                                                                |
| 3.  | G. A. Macdonald and T. Katsura, J. Petro., <u>5</u> , 82 (1964);<br>G. A. Macdonald and H. A. Powers, Geol. Soc. Amer. Bull.,<br><u>79</u> , 877 (1968). |
| 4.  | Smithsonian Institution, Washington D.C.                                                                                                                 |
| 5.  | W. G. Melson, G. Thompson and T. H. von Andel, J. Geophys.<br>Rec., <u>73</u> , 5925 (1968).                                                             |
| 6.  | W. S. Wise, Contr. Mineral. and Petrol., <u>23</u> , 53 (1969).                                                                                          |
| 7.  | W. G. Melson, E. Jarosewich, V. T. Bowen, and G. Thompson,<br>Sci., <u>155</u> , 1532 (1967).                                                            |
| 8.  | J. F. Lovering, Geochim. Cosmochim. Acta. <u>28</u> , 1745 (1964).                                                                                       |
| 9.  | C. A. Andersen, H. J. Roden and C. F. Robinson, J. Appl.<br>Phys., <u>40</u> , 3419 (1969).                                                              |
| 10. | LSPET, Sci., <u>165</u> , 1211 (1969); Sci. <u>167</u> , 1325 (1970).                                                                                    |
| 11. | LSPET, NASA SP-272 (U.S. Govt. Printing Offic., 1971). pp. 109.                                                                                          |
| L2. | A. M. Reid, personal communication, Manned Spacecraft Center, NASA, Houston (1970).                                                                      |

## COMPARISON OF ION MICROPROBE AND WET CHEMICAL ANALYSES OF MINERAL STANDARDS

|    | PLAGIOCLASE<br>AC-362 |       | CLINOPY<br>AC-3 | 'ROXENE<br>62-CI | ORTHOPYROXENE<br>AC-362-Or |       |  |
|----|-----------------------|-------|-----------------|------------------|----------------------------|-------|--|
|    | lon                   | Wet   | lon             | Wet              | lon                        | Wet   |  |
| Να | 3.17                  | 3.14  | 0.22            | 0.27             | -                          | _     |  |
| Mg |                       | _     | 6.32            | 6.69             | 9.12                       | 9.03  |  |
| AI | 11.87                 | 12.0  | 1.10            | 0.97             | 0.59                       | 0.66  |  |
| Si | _ 18.82               | 18.77 | 20.55           | 19.30            | 19.69                      | 19.57 |  |
| К  | 0.16                  | 0.08  | 0.01            | 0.02             | -                          |       |  |
| Са | 4.29                  | 4.29  | 8.54            | 8.54             | 0.32                       | 0.35  |  |
| Fe | 0.13                  | 0.11  | 3.06            | 3.69*            | 9.87                       | 10.0  |  |

## COMPARATIVE AMPHIBOLE ANALYSES

Ŋ,

|         | HORNB<br>ML    | LENDE<br>1A1 | CUMMINGTONITE<br>ML1A1 |       |  |
|---------|----------------|--------------|------------------------|-------|--|
|         | IMMA           | EMX          | IMMA                   | EMX   |  |
| Si      | 16.51          | 16.49        | 20.80                  | 20.80 |  |
| Al      | 7.47           | 7.17         | 75                     | .54   |  |
| Ti      | 088            | 080          | 029                    | .017  |  |
| Fe      | 4.43           | 5.28         | 6.41                   | 7.35  |  |
| Mn      | .13            | 13           | 34                     | .24   |  |
| Mg      | 5.73           | 5.66         | 10.82                  | 10.00 |  |
| Ca      | 4.19           | 4.18         | 14                     | 24    |  |
| Na      | 1.49           | 1.06         | .047                   | 13    |  |
| К       |                |              | 006                    | .009  |  |
| EMX ana | lyses by J. H. | Stout, UCLA. |                        |       |  |

## COMPARATIVE MINERAL ANALYSES OF CAMPERDOWN PERIDOTITE

|    | ORTHOP     | YROXENE     | OLIVINE  |       |  |
|----|------------|-------------|----------|-------|--|
|    | MAJOR ELEM | MIC PERCENT |          |       |  |
|    | IMMA       | EMX         | IMMA     | EMX   |  |
| Si | 19.22      | 19.22       | 14.21    | 14.21 |  |
| Al | 1.42       | 1.22        | n.d      | n.d.  |  |
| Mg | 17.37      | `17.58      | 26.64    | 25.80 |  |
| Fe | 1.29       | 1.72        | 1.85     | 2.89  |  |
| Ca | 0.40       | 0.31        | 0.018    | 0.025 |  |
|    |            |             |          |       |  |
|    | TRACE ELE  | MENTS IN AT | OMIC PPM |       |  |
|    | IMMA       | MS-7        | IMMA     | MS-7  |  |
| Ti | 150        | 160         | 77       | 64    |  |
| V  | 45         | 24          | 23       | 4     |  |
| Cr | 1120       | 1180        | 195      | 160   |  |
| Mn | 350        | 320         | 340      | 320   |  |
| Co | 16         | 19          | 32       | 78 ·  |  |
| Ni | n.d        | 240         | 520      | 750   |  |
|    |            |             |          |       |  |

EMX and MS-7 analyses by Smithsonian Inst., Dept. Min. Sci. n.d.—not determined.

Figure 1

ION MICROPROBE ANALYSES OF GLASSES



whole rock breccia analyses

TRACE ELEMENT VARIATION IN MAJOR MINERAL PHASES FROM SELECTED LUNAR SAMPLES



Figure 2



ELEMENT DISTRIBUTION IN ZONED

Figure 3

APOLLO 14 MINERAL ANALYSES (Preliminary Data Reduction)

|     | <u>14321,23</u> | <u>14259,</u> | <u>26-103A</u> | <u>14053,1</u> | 5    |        |          |        | <u>14163,86-A4</u> |
|-----|-----------------|---------------|----------------|----------------|------|--------|----------|--------|--------------------|
|     | Oliv.           | CPX           | Plag.          | Oliv.          | CPX  | Plag.  | Cristob. | Ilmen. | Spinel             |
| Li  | 31              | 31            | 64             | 39             | 37   | 30     | 10       | 12     | 68                 |
| В   | 1.9             | 14            | 39             | <0.5           | 4.4  | 10     | 14       | 3.7    | <1.0               |
| Na  | 45              | 750           | 8842           | 84             | 518  | 6158   | 467      | 489    | 31                 |
| Ρ   | 5.2             | 20            | 20             | 5.3            | 10   | 6.6    | 7.2      | 4.7    | 0.3                |
| K   | 27              | 339           | 862            | 21             | 56   | 331    | 680      | 632    | 45                 |
| Ti  | 79              | 2606          | 113            | 116            | 2915 | 64     | 450      | 2020   | 3045               |
| V   | 21              | 99            | 5.3            | 16             | 26   | 3.6    | 0.8      | 67     | 488                |
| Cr  | 578             | 1785          | 4.5            | 278            | 644  | 2.4    | 0.7      | 1449   | 2.1%               |
| ·Мп | 735             | 974           | 47             | 1268           | 1434 | . 44   | 9.6      | 2758   | 168                |
| Co  | 28              | 25            | -              | 34             | 31   | ·<br>- | -        | 1.0    | -                  |
| Rb  | _               | <6.4          | 2.8            | . –            | -    | <1.4   | -        | -      | -                  |
| Sr  | < 2             | · < 29        | 117            | <1.5           | < 8  | 33     | -        | _      | -                  |
| Y   | < 2             | <3.9          | <1.0           | <0.5           | 8.3  | <0.5   | -        | 7.5    | <u>-</u>           |
| Zr  | < 2             | <5.5          | <1.0           | <0.5           | < 4  | <0.5   | -        | 222    |                    |
| Ba  | -               | <0.5          | 73             | -              | 0.2  | 5.7    | 8.4      | · _    |                    |
| La  | -               |               | <0.5           | -              | -    | <0.5   | -        | -      |                    |
| Ce  | -               |               | <0.5           | -              | -    | -      | -        | -      |                    |

NOTE:

P value may be in error.

## APOLLO 14 GLASSES (Preliminary Data Reduction)

.

|    | 14259,26-103A |       | 14047,40 |        | 14259,33-1D  |           | 14321,23  | 14163,86-A3 |         |      |         |        |        |        |
|----|---------------|-------|----------|--------|--------------|-----------|-----------|-------------|---------|------|---------|--------|--------|--------|
|    | Gr. 42        | Gr. 4 | Gr. 54   | Gr. 39 | Gr. 81       | Crust gl. | Crust gl. | Sph. 2      | Sph. 10 | gl.  | Sph. 19 | Sph. 6 | Sph. 8 | Sph. 7 |
| Li | 94            | 77    | 103      | 81     | 10           | 104       | 128       | 38          | 71      | 62   | 30      | 69     | 22     | 58     |
| В  | 141           | 244   | 66       | 130    | .71          | 76        | 89        | 102         | 107 .   | 74   | 62      | 59     | 94     | 16,    |
| Na | 8194          | 7177  | 5677     | 5384   | 1351         | 12544     | 9679      | 6215        | 5910    | 4850 | 8462    | 2975   | 2952   | 617    |
| Ρ  | 366           | 427   | 135      | 324    | 36           | 206       | 218       | 349         | 274     | 264  | 278     | 36     | 81     | 12     |
| K  | 9280          | 7623  | 5080     | 3125   | 346          | 7334      | 4453      | 4392        | 3832    | 1969 | 2950    | 1742   | 1279   | 879    |
| Ti | 3143          | 2538  | 3325     | 4688   | 746          | 3883      | 2954      | 5358        | 3792    | 2562 | 2459    | 3148   | 1330   | 4170   |
| V  | 30            | 25    | 23       | 22     | 30           | 36        | 22        | 32          | 36      | 21   | 16      | 44     | 51     | 4]     |
| Cr | 198           | 198   | 223      | 277    | 228          | 404       | 242       | 378         | 320     | 341  | 183     | 517    | 897    | 306    |
| Mn | 235           | 269   | 196      | 368    | 209          | 460       | 305       | 511         | 408     | 335  | 240     | 532    | 740    | 485    |
| Co | 38            | 36    | 19       | 23     | 26           | 44        | 45        | 、<br>40     | 38      | 21   | ·22     | 32     | 43     | 34     |
| Rb | 12            | 12    | 6.9      | <5,4   | <2.9         | <16.1     | <9.3      | 9.4         | 10.4    | 4.9  | 5.3     | 5.4    | 4.4    | 4.0    |
| Sr | 34            | 50    | 29       | 51     | 31           | 55        | 36        | 62          | 59      | 40   | 91      | 58     | 17     | 56     |
| Y  | 30            | 49.   | 38       | 69     | < 45         | 44        | 42        | 68          | 59      | 41 . | 36      | 75     | 9.4    | 55     |
| Zr | 58·           | 73    | 76       | 127    | <5.9         | 77        | 107       | 67          | 78      | 57   | 25      | 126    | 15     | 85     |
| Nb | 2.6           | 4.1   | 4.3      | 7.4    | <del>.</del> | 6.0       | 5.8       | 4.4         | 3.9     | 3.2  | 2.7     | 5.7    | 1.0    | 4.4    |
| Ba | 186           | 640   | 174      | 157    | 121          | 164 ·     | 210       | 139 '       | 127     | 171  | 109     | 153    | 18     | 173    |
| La | 5.8           | 7.5   | 7.2      | 6.3    | <0.6         | 6.5       | 8.9       | 8.2         | 5.1     | 4.3  | 3.0     | 6.3    | 1.0    | 5.5    |
| Ce | 11.7          | 14,6  | 14.9     | 10.4   | <8.8         | 14.9      | 14.4      | 17.3        | 10.7    | 8.1  | 6.0     | 13.0   | 2.3    | 11.4   |

NOTES: Glasses listed in order of decreasing K content for each sample.

All P values may be consistently low by up to a factor of five.

. .

### LUNA 16 OLIVINES

|    |         |         | _       |        |
|----|---------|---------|---------|--------|
|    | 308-201 | 308-225 | 317-462 | 317-26 |
| Li | 11      | 16      | 19      | 11     |
| В  | 42      | 30      | 34      | <1     |
| Na | 620     | 64      | 150     | 380    |
| Al | 8700    | 4300    | 3400    | 2300   |
| Р  | 14      | 9       | 14      | 15     |
| K  | 230     | 20      | 30      | . 120  |
| Са | 3700    | 1400    | 1500    | 1400   |
| Ti | 850     | 180     | 290     | 310    |
| V  | 13      | 14      | 12      | 14     |
| Cr | 280     | 270     | 270     | 300    |
| Mn | 1500    | 1000    | 1300    | 1100   |
| Со | 30      | 22      | 21      | 20     |
| Sr | <3      | <2      | <6      | <14.   |
| Y  | <1      | <3      | <2      | <2     |
| Zr | <1      | <2      | <1      | <.1    |

## (Preliminary Data Reduction)

NOTES: P values may be consistently low by up to a factor of 5.

Values for Al probably too high because of polishing with  $Al_20_3$ .

### LUNA 16 CLINOPYROXENES

## (Preliminary Data Reduction)

|      | 308-86 | 308-168 | 317-505 | <u>317-422</u> |
|------|--------|---------|---------|----------------|
| Li   | 14     | . 13    | 31      | 19             |
| В    | 43     | 14      | 130     | <20            |
| Na   | 490    | 280     | 560     | 1100           |
| Al   | 1.1%   | 9700    | 1.6%    | 3.2%           |
| Р    | 12     | 20      | . 40    | 17             |
| К    | 130    | 75      | 30      | 13             |
| Ti   | 3200   | 850     | 3300    | 8800           |
| ν    | 39     | 38      | 28      | 86             |
| Cr   | 650    | 1000    | 530     | 1000           |
| Mn . | 1200   | . 1300  | 1200    | 850            |
| Ni   | <100   | < .1    | < 1     | <20            |
| Со   | 34     | 25      | . 36    | 150            |
| Rb   | < 3    | < 2     | < 3 .   | < 4            |
| Sr   | < 5    | < 3     | <10     | 16             |
| Y    | < 4    | < 3     | 9       | 13             |
| Zr   | < 3    | < 1     | 5       | 9              |
| Nb   | < 1    |         | <.4     | <.2            |
| Ba   | < 1    | <.5     | 1       | <.3            |

NOTE:

P values may be consistently low by up to a factor of 5.

### LUNA 16 PLAGIOCLASES

### (Preliminary Data Reduction)

|      | 308-12       | 317-469      | 317-504+     |
|------|--------------|--------------|--------------|
|      | <u>An 90</u> | <u>An 96</u> | <u>An 96</u> |
|      | ·            |              |              |
| Li   | 25           | 2            | 4            |
| В    | 50           | 24           | ۰            |
| Mg   | 1900         | 1100         | 610          |
| P    | 21           | 16           | 6            |
| К    | 210          | 80           | 37           |
| Ti   | 82           | 28           | 36           |
| V    | 6            | , 2          | 2            |
| Cr   | 11           | 3            | 5            |
| Fe   | 2100         | 2100         | 1600         |
| Mn   | 64           | 54           | 32           |
| · Co | · _          | <26          | <13          |
| Rb   | 3            | <i></i>      | 2            |
| Sr   | 36           | 22           | 30           |
| Ŷ    | .5           | 1            | < 1          |
| Zr   | .3           |              |              |
| Ва   | .2           | 1            | 3            |

NOTES:

: 317-504+ is an unnumbered grain between grains 504 and 508.

P values may be low by up to a factor of 5.

| LUNA 16 GLASSES (Preliminary Data Reduction | LUNA |
|---------------------------------------------|------|
|---------------------------------------------|------|

|    | <u>317-16</u> | 317-425 | <u>308-116</u> | 317-276 | <u> 308-215</u> | <u> 308- (9</u> ) | <u> 308-100</u> | <u>308-27</u>    | <u>317-33</u> 7 | <u>317-30</u> | <u>317-272</u> + | <u>317-347</u> | Breccia<br><u>308-31</u> |
|----|---------------|---------|----------------|---------|-----------------|-------------------|-----------------|------------------|-----------------|---------------|------------------|----------------|--------------------------|
| Li | 51            | 13      | 25             | 30      | 21              | 16 <sup>.</sup>   | 14              | 9                | 13              | 17            | 9                | .5             | 22                       |
| В  | 51            | 170     | 96             | 74      | 117             | 41                | 11              | 120              | 100             | 68            | 110              | 29             | 100                      |
| Na | 2200          | 4200    | 3800           | 1300    | 2500            | 2800              | 1700            | 1900             | 2700            | 1.000         | 690              | 1000           | 4000                     |
| Р  | 34            | 88      | 73             | 51      | 63              | 45                | 9               | 31               | 120             | 17            | 18               | 12             | 59                       |
| Κ  | 1400          | 940     | 800            | 730     | 720             | 670               | 660             | 540              | 360             | 290           | 110              | 80             | 160                      |
| Ti | 3700          | 4600    | 9300           | 8200    | 1200            | 730               | 660             | 1300             | 1800            | 7100          | 600              | 390            | 1.2%                     |
| V  | 26            | 26      | 27             | 30      | 28              | 14                | 18              | 29               | 38              | 31            | 29               | 22             | 23                       |
| Cr | 320           | 320     | 510            | 450.    | 360             | 190               | 170             | 330              | 330             | 440           | 180              | 120            | 340                      |
| Mn | 360           | 410     | 790            | 720     | 340             | 200               | 200             | 310              | 550             | 590           | 190              | 150            | 710                      |
| Ni | <10           | <37.0   | <33.0          | <6      | <19             | <55               | ~14             | <20              | <18             | <30           | -                | -              | <1                       |
| Со | 20            | .44     | 51             | 34      | 25              | 36                | 22              | 23               | 32 ·            | 36            | 28               | 18             | 26                       |
| Ro | 34            | .5      | 3              | ·3      | <3              | <5                | <2 .            | ` < <sup>3</sup> | 3               | <2            | 3                | <2             | 3                        |
| Sr | 43            | 50      | . 74           | 51      | 31              | 47                | 37              | 3.1              | 27              | 60            | 36               | 39             | 110                      |
| Y  | 60            | 8       | 14             | 10      | <7              | · <8              | <6              | <5               | 4               | 12            | 6                | <2             | · 10                     |
| Zr | 110           | 12      | 24             | 23      | 9>              | <12               | <7              | <5               | 4 -             | 20            | 7                | · <4           | 1.9                      |
| Nb | 50            | . <1    | -              | 2       | <1              | <1                | -               | <.2              | . –             | <1            |                  | -              | l                        |
| Ba | 150           | 12      | 22             | 36      | · 17            | 17                | 13              | 1.3              | 6               | 27            | 10               | <1             | 37                       |
| La | 6             | 8       | 1              | <1      | <.4             | _<1               | <1              | <1               | .5              | l             | 1                | -              | 1                        |
| Ce | 12            | 15      | . 2            | <2      | <1              | <2                | <1              | <1               | 1.              | l             | 1                | -              | , 2                      |

.

NOTES:

Glasses listed in order of decreasing K content. 308-(9) is an unnumbered fragment near grain 9. 317-272+ is an unnumbered fragment between grains 272 and 273. 308-31 is a breccia fragment All P values may be consistently low by up to a factor of 5.

# APOLLO 12 OLIVINE ANALYSES BY ION MICROPROBE MASS SPECTROMETRY

(ppm atomic)

12032, 46-6 12045,6 A<sub>1</sub>#6 C<sub>1</sub>#31 A<sub>2</sub>#16 #36 #32 Li \_\_\_\_\_ 4 \_\_\_\_ < .5 \_\_\_ 6 \_\_\_\_ 7 \_\_\_\_ 9 \_\_\_\_\_ 5 \_\_\_\_\_ 32 \_\_\_\_ 13 \_\_\_\_\_ 68 \_\_\_\_\_ 85 B Na 43 216 117 305 877 Mg\_\_\_\_\_ 20.0% \_\_\_\_ 20.65% \_\_\_ 18.95% \_\_\_\_ 16.92% \_\_\_\_ 19.90% Al \_\_\_\_\_ 815 \_\_\_\_ 811 \_\_\_\_ 384 \_\_\_\_ 540 \_\_\_\_ 855 Si \_\_\_\_\_ 14.25% \_\_\_\_ 14.25% \_\_\_\_ 14.27% \_\_\_\_ 14.26% \_\_\_\_ 14.24% P \_\_\_\_ 20 \_\_\_\_ 2;7 37 \_\_\_\_ 12 \_\_\_\_ 21 К \_\_\_\_\_ 20 \_\_\_\_\_ 8.8 \_\_\_\_ 33 \_\_\_\_ 127 \_\_\_\_\_610 Ca \_\_\_\_\_ 915 \_\_\_\_ 1530 \_\_\_\_ ~1200 \_\_\_\_ 1230 \_\_\_\_ 880 Ti \_\_\_\_\_ 118 \_\_\_\_\_ 171 \_\_\_\_ 250 \_\_\_\_\_ 131 \_\_\_\_\_ 207 \_\_\_\_\_ 37 \_\_\_\_\_ 48 \_\_\_\_ 27 \_\_\_\_\_ 27 \_\_\_\_\_ 31 Cr \_\_\_\_\_ 1030 \_\_\_\_\_ 2160 \_\_\_\_\_ 829 \_\_\_\_\_ 717 \_\_\_\_\_ 921 Mn\_\_\_\_\_\_1230 \_\_\_\_\_1040 \_\_\_\_\_1180 \_\_\_\_\_1453 \_\_\_\_\_1029 Fe \_\_\_\_\_ 8.14% \_\_\_\_ 7.33% \_\_\_ 9.25% \_\_\_\_ 11.21% \_\_\_\_ 8.19% Co\_\_\_\_\_ 6c \_\_\_\_ 44 \_\_\_\_ 56 \_\_\_\_ 52 \_\_\_\_ 54 Sr \_\_\_\_\_ <3 \_\_\_\_\_ <1 \_\_\_\_ <3 \_\_\_\_\_ <4 \_\_\_\_\_ 1 \_\_\_\_ < .5 \_\_\_ < .5 \_\_\_\_ 1 \_\_\_\_ 2 Zr \_\_\_\_\_ <2 \_\_\_\_\_ <1.6 \_\_\_\_ 0.1 \_\_\_\_ 4 \_\_\_\_ 5

. ..

## DISTRIBUTION OF TRACE ELEMENTS IN MAJOR SILICATE.

## PHASES OF LUNAR BASALT 12053,86

## (Preliminary Data Reduction)

|    | Plagioclase | <u>Olivine</u> | <u>Clinopyroxene</u> | Fe-Pyroxmangite |
|----|-------------|----------------|----------------------|-----------------|
|    |             |                | <u>Center</u> Edge   |                 |
|    |             |                |                      | · .             |
| Li | 26          | -              |                      | 5               |
| В  | ·           | 2              | - 3                  |                 |
| Na | 4875        | 30             | 81 290               | . 568           |
| Mg | 1347        | М.             | M M                  | М               |
| Al | M           | 828            | 1.15% 2.70%          | 2.25%           |
| P  | 48          | 4              | - 8                  | . 3 .           |
| K  | 240         | 30             | 30 31                | . 93            |
| Ca | M           | 1760           | M M                  | М               |
| Ti | 324         | 146            | 1450 3910            | 3330            |
| V  | 9           | 40             | 162 193              | . 10            |
| Cr | 8           | 1036           | 2664 2725            | 274             |
| Mn | 71          | 1244           | 1033 784             | 1877            |
| Fe | 3140        | М              | M M                  | М               |
| Со | -           | 36             | 23 49                | 31              |
| Rb | 2           | -              |                      | -               |
| Sr | 52          | -              | 11 13                | 18              |
| Y  | 2           | -              | 5 9                  | 1.5             |
| Zr | . 7         | -              | 13 21                | 17              |
| Ba | 2 .         | -              | - <u>1</u>           | -               |

### MISCELLANEOUS APOLLO 12 ANALYSES

# (Preliminary Data Reduction)

|    | 12013,14          | 12010,33   | <u>12010,33</u> |
|----|-------------------|------------|-----------------|
|    | Plagioclase (Ang) | Olivine #2 | Ilmenite        |
| Li | 67                | 7          |                 |
| В  | 16                | 6          | _               |
| Na | 6430              | 632        | 34              |
| Mg | 944               | М          | 116             |
| A1 | М                 | -          | 2240            |
| Р  | 60                | 27         | 13              |
| К  | 1550              | 380        | 63              |
| Ca | М                 | 1380       | 120             |
| Se | -                 | -          | 60              |
| Ti | 100               | 193        | M               |
| V  | 10                | · ц0       | 80              |
| Cr | 25                | 1050       | 1330            |
| Fe | 3810              | M          | М               |
| Mn | 77                | 1215       | 2450            |
| Со | _                 | 54         | 20              |
| Rb | 5                 | -<br>-     |                 |
| Sr | 48                | <3         |                 |
| У  | 5                 | 2          | 6               |
| Zr | 13                | 5          | 97              |
| Nb | -                 | · _        | . 16            |
| Ва | 39                | -          |                 |
| La | tţ                | -          |                 |
| Ce | 3                 | -          | _               |

.

.

•

.

·

# TRACE ELEMENT ANALYSES OF SELECTED LUNAR GLASSES

# (ppm atomic)

|    |                                                | APOL                              | LO 12                              |                                    | APOLLO 11                            |  |
|----|------------------------------------------------|-----------------------------------|------------------------------------|------------------------------------|--------------------------------------|--|
|    | 57,46-10F<br><sup>#</sup> 34 CLEAR<br>FRAGMENT | 32,46-B<br>#18 TURBID<br>FRAGMENT | 57,46-10F<br>#22 brown<br>spherule | 57,46-10F<br>#39 BLACK<br>FRAGMENT | 85, 17-17<br>#5 GREEN<br>CRUST GLASS |  |
| Li | 115                                            | 215                               | 94                                 | 24                                 | 33                                   |  |
| Β  | 73                                             | 32                                | 13                                 | 22                                 | 30                                   |  |
| Na | 11060                                          | 8460                              | 4130                               | 2580                               | 335                                  |  |
| Ρ΄ | 368                                            | 495                               | 17                                 | 56                                 | 212                                  |  |
| К  | 8840                                           |                                   | 3330                               | 1120                               |                                      |  |
| Ti | 7330                                           | 5900                              | 6890                               | 13000                              | 19000 .                              |  |
| V  | 82                                             | 51                                | 49                                 | 80                                 | 59                                   |  |
| Cr | 877                                            | 770                               | 97                                 | 1720                               | 1170                                 |  |
| Mn | 512                                            | 763                               | 690                                | 1240                               | 1040                                 |  |
| Ni | 1070                                           | 1020                              | 1275                               | 324                                | 1000                                 |  |
| Co | 45                                             | 55                                | 33                                 | 35                                 | 30                                   |  |
| Rb | 13                                             | 11                                | 5                                  | 4                                  | 5                                    |  |
| Sr | 73                                             | 82                                | 85                                 | 50                                 | 42                                   |  |
| Υ  | 93                                             | 139                               | 87                                 | 15                                 | 27                                   |  |
| Zr | 540                                            | 703                               | 288                                | 53                                 | 85                                   |  |
| Ba | 161                                            | 267                               | 226                                | 16                                 | 67                                   |  |
| La | 24                                             | 36                                | 20                                 | 4                                  | < 2                                  |  |
| Ce | 42                                             | 97                                | 54                                 | 4                                  | 7                                    |  |

### TRACE ELEMENT ANALYSES OF LUNAR GLASSES

IN APOLLO 12 SAMPLES

(Preliminary Data Reduction)

|    | <u>10,33</u> | <u>32,46-6</u> | <u>32,46-B</u>  | <u>32,46-B</u> | <u>57.46-10</u> F | <u>57,46-10</u> F | <u>01,64-3</u> | 01,64-3    | <u>01,64-3</u> |
|----|--------------|----------------|-----------------|----------------|-------------------|-------------------|----------------|------------|----------------|
|    | #1           | #28 <u></u>    | <u>#16</u>      | <u>#14</u>     | <u>#44</u>        | <u>#51</u>        | <u>#52</u>     | <u>#16</u> | <u>#13</u>     |
|    |              |                |                 |                |                   |                   |                |            |                |
| Li | 20           | 68             | 148             | 153            | 60                | 26                | 22             | 24         | 24             |
| В  | < 1          | 30             | 37              | 25             | 20                | 8                 | 19             | 13         | 80             |
| Na | 918          | 4200           | 5660            | 4570           | 5000              | 3270              | 700            | 290        | 1260           |
| Р  | 50           | 46             | 625             | 527            | 474               | 110               | 20             | 43         | 170            |
| K  | 443          | 4930           | 5760            | 5270           | 4730              | 1258              | 87             | 110        | 550            |
| Ti | 914          | 8240           | 5400            | 4240           | 4870              | 3620              | 1.4%           | 6980       | 6110           |
| V  | 67           | 58             | 61              | 53             | 32                | 56                | 75             | 61         | 54             |
| Cr | 1420         | 688            | 841             | 665            | 483               | 650               | 1120           | 756        | 1630           |
| Mn | 974          | 659 · ·        | 765             | 686            | 473               | 472               | 1210           | 693        | 644            |
| Со | 30           | 35             | 84              | 70             | 23                | 23                | 35             | 39         | 37             |
| Rb | 2            | 5              | . 9             | 11             | 6                 | 3                 | 2              | 2          | 2              |
| Sr | 26           | 5.6.           | <sup>•</sup> 78 | 68             | 49                | 50                | 45             | 41         | 27             |
| Y  | 15           | 14             | 88              | 102            | 100               | 31                | 21             | 52 .       | 27             |
| Zr | 50           | 35             | 606             | 550            | 591               | 176               | 72             | 320        | 204            |
| Ba | 6            | 9              | 82              | 172            | 192               | 64                | 13             | 73         | 39             |
| La | <.5          | 2              | 14              | 29             | 24                | 9                 | 2              | 15         | 10             |
| Ce | <.5          | 4              | 33              | 79             | 66                | 21                | 6              | 33         | 41             |
|    |              |                |                 |                |                   |                   |                |            |                |

i.

PLAGIOCLASE AND OLIVINE IN APOLLO 11 BASALTS AND GRAIN MOUNT

(Preliminary Data Reduction)

|    | PLAGIOCLA        | SE                |                |                    |   | OLIVINE  |                   |  |  |
|----|------------------|-------------------|----------------|--------------------|---|----------|-------------------|--|--|
|    | <u>Lunar 5 G</u> | <u>rain Mount</u> | <u>10017,2</u> | <u>5 (Type A</u> ) |   | 10017,28 | 10017,28 (Type B) |  |  |
|    | A                | G                 | A              | <u>C</u>           |   | Center   | Edge              |  |  |
| Li | 5                | 61                | 22             | 108                |   | -        | _                 |  |  |
| В  | 8                | -                 | 26             | _                  |   | -        | 6                 |  |  |
| Na | 4880             | 6970              | 3875           | 4030               | , | 16       | 12                |  |  |
| Mg | 872              | 358               | 1179           | 1242               |   | · M      | М                 |  |  |
| Al | М                | Μ                 | М              | М                  |   | 354      | 1575              |  |  |
| Ρ  | 34               | 174               | 21             | _                  |   | 52       | . –               |  |  |
| K  | 408              | 570               | . 143          | 158                |   | 6        | 2 .               |  |  |
| Ca | Μ.               | М                 | М              | М                  |   | 685      | 814               |  |  |
| Ti | 169              | 146               | 218            | 442                |   | 411 ,    | 351               |  |  |
| v  | <b>_</b> ·       | -                 |                | -                  |   | 19       | 12                |  |  |
| Cr | <b>-</b> .       | -                 | 5              | -                  |   | 685      | 598               |  |  |
| Mn | 51               | 48                | 56             | 53                 |   | 1010     | 1180              |  |  |
| Fe | 1540             | 1660              | 1875           | 1690               |   | М        | М                 |  |  |
| Со | -                | · _               | -              |                    |   | 19       | 25                |  |  |
| Rb | 5                | 3                 | _              | -                  |   | -        | -                 |  |  |
| Sr | 76               | 109               | 59             | 58                 |   | -        | -                 |  |  |
| Ba | 16               | 1349              | 1              | -                  |   | -        | -                 |  |  |

### ANALYSES OF CLINOPYROXENES IN APOLLO 11 FINES

.

| (Preliminary | Data | Reduction) |   |
|--------------|------|------------|---|
|              |      |            | • |

?

|      | 10017-2 | 26 (Type 1 | B)     | <u>10017,25 (Type A</u> ) | 10017,17          | Lunar 5 Gra      | ain Mount      |           |           | ·               |
|------|---------|------------|--------|---------------------------|-------------------|------------------|----------------|-----------|-----------|-----------------|
|      | Edge    | Middle     | Center |                           | <u>(Breccia</u> ) | <u>ll Center</u> | <u>ll Edge</u> | <u>15</u> | <u>13</u> | Fe-Pyroxmangite |
| Li ' |         | 19         | 18     | 13                        | _                 | 23               | 44             | 18        | 7         | <1              |
| В    | 25      | 6 ·        | 21     | 16                        | 11                | 14               | 9              | 18        | <2        | <2              |
| Na   | 43      | 421        | 278    | 513                       | 342               | 579              | 1035           | 3-8.7     | 530       | 133             |
| Al   | 2.95%   | 2.04%      | 3.22%  | 2.85%                     | 1.13%             | 4.35%            | 2.52%          | 3.00%     | 0.6%      | .09%            |
| Р    | 30      | 25/        | 50     | 42                        | 33                | 89               | 11.3           | -         | 26        | 27              |
| K    | 84      | 22         | 41     | 77                        | 32                | 104              | 176            | . 133     | 22        | 53              |
| Ti   | 7760    | 7530       | 6155   | 6260                      | 3750              | 6890             | 4500           | 4190      | 2060      | 2500            |
| V    | 109     | . 105      | 88     | 73                        | 32                | 34               | 26             | 44        | 20        | 11              |
| Cr   | 2050    | 2020       | 1790   | 1800                      | 763               | 1457             | 948            | 1240      | 575       | 294             |
| Mn   | 652     | 760        | 953    | 1300                      | 1230              | 569              | 896            | 665       | 647       | 2220            |
| Sr   | 4       | 4          | 4      | 13                        | 3                 | 5                | 21             | 6         | 5         | 3               |
| Y    | 9       | 14         | 8      | . 10                      | 5                 | 14               | 39             | 4         | 9         | 16              |
| Zr   | 7       | 9          | 6      | 14                        | 5                 | 22               | 79             | 9         | 30        | 14              |
| Ba   | l       | -          | 0.5    | -                         | <b>-</b> .        | · _              | 35             | <1        | <1        | <1              |

\* NOTE: Grain strongly zoned.

٠,

۰.

.

### ANALYSES OF GRAINS IN APOLLO 11 ANORTHOSITIC FRAGMENTS

(Preliminary Data Reduction)

|    | PLAGIOCLAS    | SE                   | OLIVINE               |                       |                       |
|----|---------------|----------------------|-----------------------|-----------------------|-----------------------|
|    | <u>KAY-17</u> | <u>10085,7-6 (1)</u> | <u>10085,7-6 (2</u> ) | <u>10085.7-6 (2</u> ) | <u>10085,7-6 (1</u> ) |
| Li | 3             | 16                   | 21                    | 66                    | 70                    |
| В  | 25            | 3                    | 120                   | 76                    | 124                   |
| Na | 6510          | 4974                 | 3038                  | 745                   | 1680                  |
| Mg | 917           | 424                  | 1638                  | М                     | М                     |
| Al | М             | М                    | М                     | 140                   | 246                   |
| Р  | 42            | 17                   | 11                    | . 47                  | 60                    |
| K  | 315 -         | 289                  | 426                   | 115                   | 207                   |
| Ca | М             | М                    | M                     | 464                   | 595                   |
| Ti | 42            | 52                   | 36                    | 154                   | 175                   |
| V  | 6 .           | -                    | -                     | 24                    | 17                    |
| Cr | 42            | -                    | 4                     | 516                   | 467                   |
| Mn | 62            | 61                   | 43                    | 842                   | 797                   |
| Fe | 2960          | 2710                 | 1140                  | Μ                     | М                     |
| Sr | 38            | 61                   | 57                    | 1                     | 2                     |
| Y  | 4             | 2                    | -                     | -                     | ~                     |
| Ba | 1             | 16                   | 11                    | _                     | -                     |

NOTE: Olivine (1) is adjacent to plagioclase (1) in thin section.

Ì,

## ANALYSES OF GLASS IN APOLLO 11 FINES AND CACHARI METEORITE

(Preliminary Data Reduction)

|                 | <u>Crust Glas</u> | s in 10085,17-17 | (Breccia) | <u>Lunar 5 Grain Mount</u> | <u>Cachari</u> |
|-----------------|-------------------|------------------|-----------|----------------------------|----------------|
|                 | Spot 3            | Spot 4           | Spot 5    | #19                        | Vein Glass     |
|                 |                   |                  |           |                            |                |
| Li              | 22                | 22               | 24        | 26                         | 10             |
| В               | 14                | 10               | 23        | 20                         | 19             |
| Na              | 2520              | 2085             | 2430      | 4015                       | 2600           |
| Ρ.              | 130               | 99               | 190       | 109                        | 38             |
| K               | 490               | 281              | 585       | 1380                       | 225            |
| Ti              | 1.74%             | 1.55%            | 1.60%     | 2.09%                      | .14%           |
| V               | 35                | 36               | . 45      | 54                         | 29             |
| Cr              | 780               | 750              | 900       | 945                        | 813            |
| Mn              | 751               | 780              | 805       | 549                        | 1885           |
| Со              | 22                | 25               | . 24      | .16                        | -              |
| Rb <sub>.</sub> | ~                 | 3                | 3         | ·                          |                |
| Sr              | 31                | 36               | 31        | 38                         | 16             |
| Y               | 20                | 20               | 20        | 22                         | 2              |
| Zr              | 65                | 65               | .67       | 82                         | 8              |
| Ba              | 15                | 13 -             | 17        | 25                         | 2              |
| Ce              | 3                 | 4                | 5         | 4                          | -              |

## ANALYSES OF MINERALS IN ANGRA DOS REIS AND CACHARI METEORITES

|      | ANGRA DOS REIS      |                            | CACHARI              |                      |             |  |
|------|---------------------|----------------------------|----------------------|----------------------|-------------|--|
|      | Large Clinopyroxene | <u>Small Clinopyroxene</u> | <u>Orthopyroxene</u> | <u>Clinopyroxene</u> | Plagioclase |  |
| Li   | 3 <sup>.</sup>      | 3                          | 13                   | 11                   | 9           |  |
| В    | 5                   | 3                          | 7                    | 15                   | 42          |  |
| Na   | 160                 | 146                        | 364                  | 385                  | 5040        |  |
| . Mg | М                   | М                          | М                    | М                    | 2075        |  |
| Al   | 4.35%               | 4.35%                      | 2730                 | 3310                 | М           |  |
| Ρ    | 44                  | 41                         | 30                   | 30                   | 36          |  |
| K    | 7                   | 12                         | 113                  | 79                   | 490 ·       |  |
| Ca   | Μ                   | Μ                          | 9950                 | М.                   | М           |  |
| Ti   | 3590                | 3610                       | 276                  | 611                  | 76          |  |
| V    | 78                  | 72                         | 14                   | 42                   | / -         |  |
| Cr   | 605                 | 545                        | 265                  | 675                  | -           |  |
| Mn   | 294                 | 289                        | 4150                 | 3460                 | 281         |  |
| Fe   | M                   | М                          | М                    | M                    | 7285        |  |
| Ni   | -                   |                            | -                    | 405                  | · _         |  |
| Со   | 58                  | 49                         | 9                    | 7                    | -           |  |
| Rb   | -                   | -                          |                      |                      | .5          |  |
| Sr   | 38                  | 33                         | 2                    | 2                    | 70          |  |
| Υ.   | 12                  | 11                         | 2.                   | 2                    | 1           |  |
| Zr   | 39                  | · 36                       | 3                    | ie 2                 | 2           |  |
| Nb   | 2                   | . 1                        | -                    | -                    | -           |  |
| Ba   | l                   | 1                          | l                    | 2                    | 17          |  |
| La   | . 4                 | 3                          | -                    | -                    | -           |  |
| Ce   | 10                  | 8                          | -                    | · _                  | -           |  |

## (Preliminary Data Reduction)

.

## ANALYSES OF MINERALS IN THE JUVINAS METEORITE

|      | Clinopyroxene | Plagioclase | Ilmenite |
|------|---------------|-------------|----------|
|      |               |             |          |
| Li   | 13            | 13          | 2        |
| В    | 3             | 5           | 2        |
| Na   | 178           | 4080        | . 35     |
| Mg   | М             | 1170        | 1.15%    |
| Al · | 4130          | М           | 196      |
| Si   | М             | М           | 27       |
| Р    | 23            | 10          | 9        |
| · K  | 9             | 252         | 13       |
| Se   | <b>_</b> .*   | . –         | ւել      |
| Ti   | 864           | _ 17        | М        |
| V    | 33            | -           | 139      |
| Cr   | 1640          | 9           | 397      |
| Mri  | 3620          | 108         | 6150     |
| Fe   | M             | 3330        | М        |
| Ni   | 74            | -           | 1        |
| Со   | 23            | ~           | <4       |
| Sr   | . 3           | 49          | -        |
| Y    | 5             | 1           | 2        |
| Zr   | 9             | 2           | 10       |
| Nb   | 1             |             | _ 28     |
| Ba   | <1            | 11          | -        |

## (Preliminary Data Reduction)

|     | <u>Center</u> | Middle | Edge  | Spinel Inclusion |
|-----|---------------|--------|-------|------------------|
| В   | 34            | 8      | 1.    | Na 897           |
| Na  | 2680          | 656    | 397   | Mg 8.32%         |
| Al  | 466           | 528    | 347   | Al 11.8%         |
| P . | 22            | 14     | 13    | Si 178           |
| K   | 1100          | 216    | 160   | К 354            |
| Ca  | 1450          | 1210   | 531   | Sc 6             |
| Ti  | 96            | 64     | 57    | Ti 4895          |
| V   | 18            | 21     | 14    | V 440            |
| Cr  | 519           | 572    | 373   | Cr 16.3%         |
| Mn  | 451           | 510    | 589   | Mn 482           |
| Fe  | 2.56%         | 2.91%  | 3.84% | Fe 4.12%         |
| Со  | 41            | 45     | 46    | Co 44            |
| Ni  | 67            | 81     | 67    | Ni 30            |
| Sr  | 2             | 3      | 2     |                  |
| Zr  | 1.            | l      | 2     |                  |
| Sn  | 37            | 13     | 12    |                  |

(Preliminary Data Reduction)

ANALYSES OF ZONED OLIVINE IN OCEANITE C-112 FROM HAWAII

...

## ANALYSES OF MINERALS IN TRACHYTE (C-116) FROM HAWAII

|    | CLINOPYROXENE | <u>OLIVINE</u> |       | PLAGIOCLASE |           |  |
|----|---------------|----------------|-------|-------------|-----------|--|
|    |               | Center         | Edge  | Center      | Edge      |  |
| Li | 66            | 54             | 59    | 23          |           |  |
| Be | 40            |                | -     | ·           |           |  |
| В  | 11            | 17             | 3     | 3           | 5         |  |
| Na | 1.52%         | 1160           | 688   | M           | М         |  |
| Mg | М             | М              | М     | 45          | 47        |  |
| Al | 3760          | 72             | 38    | · M         | M         |  |
| Р  | 65            | 78             | 81    | 13          | < 1       |  |
| Κ  | 473           | 335            | 190   | •47%        | 3.0%      |  |
| Ca | . <b>M</b>    | 1140           | 895   | 1.75%       | .14%      |  |
| Ti | 1370          | 63             | 83    |             | -         |  |
| V  | 17            | 2              | . 2   | -           |           |  |
| Cr | 48            | 44             | 35    | _           | -         |  |
| Mn | 6 <b>2</b> 50 | 2.15%          | 2.26% | 47          | 55        |  |
| Fe | М             | M              | М     | 929         | 1408      |  |
| Со | 102           | 7              | 8     | -           | -         |  |
| Cu | 74            | 34             | 41    | -           | -         |  |
| Zn | 840           | 1650           | 1970  | -           |           |  |
| Rb |               | -              |       | 1           | 25        |  |
| Sr | 16            | ц              | 5     | 757         | 67        |  |
| Y  | 91            | 2              | 4     | < 1         | <u></u> . |  |
| Zr | 2316          | ц              | Ч     | 5           |           |  |
| Nb | 8             |                | ~     |             | -         |  |
| Sn | 109           | 22             | 26    |             | -         |  |
| Ba | 1             | -              | -     | 210         | 105       |  |
| La | 46            | - ,            | ~     | -           |           |  |
| Ce | 200           | 2              | 2     | 4           | -         |  |
| Pb | 152           | 58             | 47    | 9           | е         |  |

## (Preliminary Data Reduction)

## ANALYSIS OF MINERALS IN NEPHELINITE FROM HAWAII (#425)

(Preliminary Data Reduction)

|      | Clinopyroxene |          | Nepheline |      |
|------|---------------|----------|-----------|------|
|      | <u>1</u>      | <u>2</u> | <u>1</u>  | 2    |
| Li   | 6             | 5        | 6         | 4    |
| В    | <.5           | <.5      | <.5       | <.5  |
| Na   | 3610          | 4240     | М         | M    |
| Mg   | М             | M        | 649       | 590  |
| Al   | 3.75%         | 4.41%    | M         | М    |
| Р    | 52            | 123      | 11        | 11   |
| К    | 17            | 29       | М         | M    |
| Ti   | 6640          | 9370     | 117       | 196  |
| V    | 226           | 268      | -         | -    |
| Cr   | 52            | 60       | -         | -    |
| Mn   | 540           | 590      | 106       | 84   |
| Fe   | M             | M -      | 3020      | 2850 |
| Rb · | -             | -        | 28        | 23   |
| Sr   | 99            | 151      | 290       | 424  |
| Y    | 8             | . 11     | · 2       | -    |
| Zr   | 120           | 129      | 1         |      |
| Nb   | 3             | 4        | -         | -    |
| Ba   | <.5           | l        | 19        | 28   |
| La   | 11            | 22       | _         | -    |
| Ce   | 33            | . 46     | · j -     | -    |
|      |               | κ.       |           |      |

`,

## ANALYSES OF MINERALS IN HIGH-ALUMINA BASALT (4-412) FROM THE MID-ATLANTIC RIDGE

# (Preliminary Data Reduction)

|                     | <u>Clinopyroxene</u> | Plagioclase    | Ilmenite |
|---------------------|----------------------|----------------|----------|
|                     |                      |                |          |
| Li                  | 9                    | . 4            | 13       |
| В                   | 11                   | 2              | 2        |
| Na                  | 2355                 | 74             | M        |
| Mg                  | М                    | М              | 1420     |
| Al                  | 2.55%                | 460            | · M      |
| Р                   | 15                   | 38             | 4        |
| K .                 | 297                  | 40             | 244      |
| Ca                  | M                    | 1460           | М        |
| Ti                  | 3540                 | 54             | ւլւլ     |
| V                   | 244                  | . 10           | 12       |
| Cr                  | 535 .                | 233            | 3        |
| Mn                  | . 826                | 935            | 51       |
| Fe                  | М                    | · M            | 1900     |
| Ni                  | 57                   | 200            | -        |
| Со                  | 31                   | 51             | -        |
| Rb                  | <b>–</b>             | -              | <.5      |
| $\operatorname{Sr}$ | 6                    |                | 72       |
| Y                   | 9                    | · <del>-</del> | -        |
| Zr                  | 13                   |                | -        |
| Ba                  | . 3                  |                | 1        |

# ANALYSES OF MINERALS IN THOLEIITIC BASALT (51-2) FROM THE MOJAVE DESERT

(Preliminary Data Reduction)

|                     | OLIVINE |      | PLAGIOCLA | CLASE |  |
|---------------------|---------|------|-----------|-------|--|
|                     | Center  | Edge | Center    | Edge  |  |
| Li                  | 13      | 6    | 0.5       | 2     |  |
| В                   | 49      | . 28 | 6         | 10    |  |
| Na .                | 308     | 147  | 2.2%      | 1.6%  |  |
| Mg                  | М       | · M  | 409       | 582   |  |
| Al                  | 384     | 256  | М         | М     |  |
| Р                   |         | 9    | 6         | 6     |  |
| К                   | 48      | 22   | 1520      | 759   |  |
| Ca                  | 16.10   | 1390 | М         | М     |  |
| Ti                  | 385     | 194  | 314       | 270   |  |
| ν                   | . 15    | 9    | -         | ***   |  |
| Cr                  | .309    | 223  | -         | -     |  |
| Mn                  | 1220    | 1210 | 39        | 45    |  |
| Fe                  | M       | М    | 1360      | 1550  |  |
| Ni                  | 318     | 314  | · _       |       |  |
| Со                  | 70      | 87   | -         | -     |  |
| Zn                  | 386     | 732  | 603       | -     |  |
| Rb                  | -       | -    | 3         | 5     |  |
| $\operatorname{Sr}$ | 2       | 1    | 402       | 279   |  |
| Ba                  | —       | -    | 31        | 8     |  |

## ANALYSES OF MINERALS IN BASANITE (B-1) FROM THE MOJAVE DESERT

## (Preliminary Data Reduction)

|      | CLINOPYROXENE |       | OLIVINE |      | PLAGIOCLASE |  |
|------|---------------|-------|---------|------|-------------|--|
|      | Center        | Edge  | Center  | Edge | Center      |  |
|      | _             |       | _ · .   |      |             |  |
| Li   | · <1          | 24    | 5       | 10   | . <b></b>   |  |
| В    | . 62          | 83    | 33      | 43   | 21          |  |
| Na   | 2180          | 2785  | 225     | 749  | М           |  |
| Mg   | М             | М     | М       | М    | 476         |  |
| Al   | 2.75%         | 4.05% | 369     |      | М           |  |
| Р    | 14            | 51    | 15      | 27   | -           |  |
| K    | 249           | 112   | 53      | 89   | 1090        |  |
| Са   | М             | М     | 962     | 340  | Μ           |  |
| Ti   | 5900          | 5890  | 72      | 900  | 288         |  |
| V    | 171           | 130   | 12      | 80   | 4           |  |
| Cr   | 443           | 325   | . 205   | 310  | 3           |  |
| Mn   | 436           | 241   | 723     | 1140 | 41          |  |
| Fe   | · M           | М     | М       | М    | 1530        |  |
| Ni   | < 100         | -     | 253     | 240  | -           |  |
| Co   | 29            | 16    | 35      | 52   | -           |  |
| Zn   | 498           | 458   | 367     | 733  | -           |  |
| Rb   |               | 4     |         | ~    | .1          |  |
| ' sr | 36            | 21    | 2       | 4    | . 343       |  |
| Y    | 9             | 6     | < 1     | < 1  | -           |  |
| Zr   | 63            | 37    | < 1     | 1    | -           |  |
| Sn   |               | 17    | 33      | 19   | -           |  |
| Ba   | 6             | 2     |         |      | 13          |  |
| La   | . <b></b>     | 1     | -       | -    | < 1         |  |
| Ce   | 3             | 4     | -       | -    | -           |  |

.

ANALYSES OF MINERALS IN BASALT FROM DISKO ISLAND AND MYLONITIZED SPINEL PERIODOTITE FROM ST. PAUL'S ROCKS

| DISKO BASALT   |                                                                                                                                         | ST. PAUL'S ROCKS PERIDOTITE                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>Olivine</u> | <u>Plagioclase</u>                                                                                                                      | <u>Olivine</u>                                                                                                                                                                      | <u>Spinel</u>                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | · · · .                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 4              | 16                                                                                                                                      | <u>-</u>                                                                                                                                                                            | <b>_</b> ,                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3              | 3                                                                                                                                       |                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 165            | М                                                                                                                                       | 116                                                                                                                                                                                 | 159                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| M              | 863                                                                                                                                     | М                                                                                                                                                                                   | 10.08%                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 405            | · M                                                                                                                                     | 1970                                                                                                                                                                                | 25.29%                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| М              | M ,                                                                                                                                     | М                                                                                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| . 26           | 26                                                                                                                                      | 17                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 18             | 506                                                                                                                                     | 77                                                                                                                                                                                  | 41                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 57             | 141                                                                                                                                     | 31                                                                                                                                                                                  | 46                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 31             | 4<br>                                                                                                                                   | . 26                                                                                                                                                                                | 403                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 452            | <b>m</b> 71                                                                                                                             | 228                                                                                                                                                                                 | 3.28%                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 565            | 64                                                                                                                                      | . 485                                                                                                                                                                               | 381                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| М              | 4090                                                                                                                                    | М                                                                                                                                                                                   | 3.43%                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 70             | -                                                                                                                                       | 72                                                                                                                                                                                  | 59                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 51             | -                                                                                                                                       | 40                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| -              | 2                                                                                                                                       | -                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 2              | 94                                                                                                                                      |                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| -              | 1                                                                                                                                       | -                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <10            | <5                                                                                                                                      | · _ ·                                                                                                                                                                               | < <sup>Ц</sup>                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                | DISKO BASA<br>Olivine<br>4<br>3<br>165<br>M<br>405<br>M<br>26<br>18<br>57<br>31<br>452<br>565<br>M<br>70<br>51<br>-<br>2<br>-<br>2<br>- | DISKO BASALT   Olivine Plagioclase   4 16   3 3   165 M   M 863   405 M   M 863   405 M   26 26   18 506   57 141   31 -   452 -   565 64   M 4090   70 -   51 -   2 94   - 1   <10 | DISKO BASALT   ST. PAUL'     Olivine   Plagioclase   Olivine     4   16   -     3   3   -     165   M   116     M   863   M     405   M   1970     M   863   M     405   M   1970     M   M   M     26   26   17     18   506   77     57   141   31     31   -   26     452   -   228     565   64   485     M   4090   M     70   -   72     51   -   40     -   2   94     -   1   -     20   55   - | DISKO BASALT   ST. PAUL'S ROCKS PERIDOTITI     Olivine   Plagioclase   Olivine   Spinel     4   16   -   -     3   3   -   -     165   M   116   159     M   863   M   10.08%     405   M   1970   25.29%     M   M   72   26     26   26   17   1     18   506   77   41     57   141   31   46     31   -   228   3.28%     565   64   485   381     M   4090   M   3.43%     70   -   72   59     51   -   40   -     -   2   94   -   -     -   1   -   -   -     2   94   -   -   -     -   1   -   - |  |

## (Preliminary Data Reduction)