740 research outputs found

    Direct photons in d+Au collisions at s_(NN)**(1/2)=200GeV with STAR

    Full text link
    Results are presented of an ongoing analysis of direct photon production in s_(NN)=200GeV deuteron-gold collisions with the STAR experiment at RHIC. A significant excess of direct photons is observed near mid-rapidity 0<y<1 and found to be consistent with next-to-leading order pQCD calculations including the contribution from fragmentation photons.Comment: 4 pages, 4 figures, HotQuarks 200

    Quarkonia Measurements with STAR

    Get PDF
    We report results on quarkonium production from the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). J/psi spectra in p+p and Cu+Cu collisions at sqrt(s) = 200 GeV with transverse momenta in the range of 0.5-14 GeV/c and 5-8 GeV/c, respectively, are presented. We find that for p_T > 5 GeV/c yields in p+p collisions are consistent with those in minimum-bias Cu+Cu collisions scaled with the respective number of binary nucleon-nucleon collisions. In this range the nuclear modification factor, R_AA, is measured to be 0.9+-0.2(stat). For the first time at RHIC, high-p_T J/psi-hadron correlations were studied in p+p collisions. Implications from our measurements on J/psi production mechanisms, constraints on open bottom yields, and J/psi dissociation mechanisms at high-p_T are discussed. In addition, we give a brief status of measurements of Upsilon production in p+p and Au+Au collisions and present projections of future quarkonia measurements based on an upgrades to the STAR detector and increased luminosity achieved through stochastic cooling of RHIC.Comment: 5 pages, 5 figures. Prepared for 3rd International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), A Toxa, Spain, June 8-14, 200

    Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve

    Get PDF
    {\em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant to the Earth's core. The {\em ab initio} free energy is obtained by using thermodynamic integration to calculate the change of free energy on going from a simple reference system to the {\em ab initio} system, with thermal averages computed by {\em ab initio} molecular dynamics simulation. The reference system consists of the inverse-power pair-potential model used in previous work. The liquid-state free energy is combined with the free energy of hexagonal close packed Fe calculated earlier using identical {\em ab initio} techniques to obtain the melting curve and volume and entropy of melting. Comparisons of the calculated melting properties with experimental measurement and with other recent {\em ab initio} predictions are presented. Experiment-theory comparisons are also presented for the pressures at which the solid and liquid Hugoniot curves cross the melting line, and the sound speed and Gr\"{u}neisen parameter along the Hugoniot. Additional comparisons are made with a commonly used equation of state for high-pressure/high-temperature Fe based on experimental data.Comment: 16 pages including 6 figures and 5 table

    Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice

    Get PDF
    We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schr{\"o}dinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasi-periodic oscillations of the DS about the minimum of the parabolic trap.Comment: Typo fixed in Eq. (1): cos^2 -> sin^

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    Proliferating particle surface area via microbial decay has profound consequences for remineralisation rate: a new approach to modelling the degradation of sinking detritus in the ocean

    Get PDF
    Sinking detritus particles in the ocean help to regulate global climate by transporting organic carbon into deep waters where it is sequestered from the atmosphere. The rate at which bacteria remineralise detritus influences how deep particles sink and the length-scale of carbon sequestration. Conventional marine biogeochemical models typically represent particles as smooth spheres where remineralisation causes surface area (SA) to progressively shrink over time. In contrast, we propose that particle SA increases during degradation as microbial ectoenzymes cause a roughening of surfaces in a process similar to acid etching on previously smooth glass or metal surfaces. This concept is investigated using a novel model, SAMURAI (Surface Area Modelling Using Rubik As Inspiration), in which the biomass of individual particles is represented as a 3D matrix of cubical sub-units that degrades by progressive removal of sub-units that have faces in contact with the external environment. The model rapidly generates microscale rugosity (roughness) that profoundly increases total SA, giving rise to biomass-specific remineralisation rates that are approximately double those of conventional models. Faster remineralisation means less carbon penetrates the ocean’s interior, diminishing carbon sequestration in deep waters. Results indicate that both SA and microbial remineralisation are highly dynamic, as well as exhibiting large variability associated with particles of different porosities. Our work highlights the need for further studies, both observational and modelling, to investigate particle SA and related microbial dynamics in order to reliably represent the role of ocean biology in global biogeochemical models

    Testing Logselfsimilarity of Soil Particle Size Distribution: Simulation with Minimum Inputs

    Get PDF
    Particle size distribution (PSD) greatly influences other soil physical properties. A detailed textural analysis is time-consuming and expensive. Soil texture is commonly reported in terms of mass percentages of a small number of size fractions (typically, clay, silt and sand). A method to simulate the PSD from such a poor description or even from the poorest description, consisting in the mass percentages of only two soil size fractions, would be extremly useful for prediction purposes. The goal of this paper is to simulate soil PSDs from the minimum number of inputs, i.e., two and three textural fraction contents, by using a logselfsimilar model and an iterated function system constructed with these data. High quality data on 171 soils are used. Additionally, the characterization of soil texture by entropy-based parameters provided by the model is tested. Results indicate that the logselfsimilar model may be a useful tool to simulate PSD for the construction of pedotransfer functions related to other soil properties when textural information is limited to moderate textural data

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e′p)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,e′p)γ(e,e'p)\gamma to H(e,e′p)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
    • …
    corecore