21,376 research outputs found

    “Our Only Child Has Died” – A Study of Bereaved Older Chinese Parents

    Full text link
    Long and complicated grief is a relevant factor contributing to the deterioration of the older adults’ later life quality. In China, the unintentional consequence of the one child policy has emerged. There, the group of older adults who lost their only child is called shiduers. The current study compared 42 older adults who lost their only child to 33 older adults who have a child, in term of their physical and mental health, and social support. The results confirmed the general deteriorating trend in those aspects of the bereaved Chinese parents’ life after their only child’s death. The results also revealed the impairments on the shiduers’ physical, mental, and social aspects were significant, compared to the clinical diagnosis cutoff points used in Western countries. Unique policy and cultural characteristics are the main factors contributing to the severe impairment of shiduers. Results have implications for policy advocacy and practice intervention in specific cultural environments

    Physical Representation-based Predicate Optimization for a Visual Analytics Database

    Full text link
    Querying the content of images, video, and other non-textual data sources requires expensive content extraction methods. Modern extraction techniques are based on deep convolutional neural networks (CNNs) and can classify objects within images with astounding accuracy. Unfortunately, these methods are slow: processing a single image can take about 10 milliseconds on modern GPU-based hardware. As massive video libraries become ubiquitous, running a content-based query over millions of video frames is prohibitive. One promising approach to reduce the runtime cost of queries of visual content is to use a hierarchical model, such as a cascade, where simple cases are handled by an inexpensive classifier. Prior work has sought to design cascades that optimize the computational cost of inference by, for example, using smaller CNNs. However, we observe that there are critical factors besides the inference time that dramatically impact the overall query time. Notably, by treating the physical representation of the input image as part of our query optimization---that is, by including image transforms, such as resolution scaling or color-depth reduction, within the cascade---we can optimize data handling costs and enable drastically more efficient classifier cascades. In this paper, we propose Tahoma, which generates and evaluates many potential classifier cascades that jointly optimize the CNN architecture and input data representation. Our experiments on a subset of ImageNet show that Tahoma's input transformations speed up cascades by up to 35 times. We also find up to a 98x speedup over the ResNet50 classifier with no loss in accuracy, and a 280x speedup if some accuracy is sacrificed.Comment: Camera-ready version of the paper submitted to ICDE 2019, In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019

    Computer modelling of agroforestry systems

    Get PDF

    Insights from unifying modern approximations to infections on networks

    Get PDF
    Networks are increasingly central to modern science owing to their ability to conceptualize multiple interacting components of a complex system. As a specific example of this, understanding the implications of contact network structure for the transmission of infectious diseases remains a key issue in epidemiology. Three broad approaches to this problem exist: explicit simulation; derivation of exact results for special networks; and dynamical approximations. This paper focuses on the last of these approaches, and makes two main contributions. Firstly, formal mathematical links are demonstrated between several prima facie unrelated dynamical approximations. And secondly, these links are used to derive two novel dynamical models for network epidemiology, which are compared against explicit stochastic simulation. The success of these new models provides improved understanding about the interaction of network structure and transmission dynamics

    Social encounter networks : collective properties and disease transmission

    Get PDF
    A fundamental challenge of modern infectious disease epidemiology is to quantify the networks of social and physical contacts through which transmission can occur. Understanding the collective properties of these interactions is critical for both accurate prediction of the spread of infection and determining optimal control measures. However, even the basic properties of such networks are poorly quantified, forcing predictions to be made based on strong assumptions concerning network structure. Here, we report on the results of a large-scale survey of social encounters mainly conducted in Great Britain. First, we characterize the distribution of contacts, which possesses a lognormal body and a power-law tail with an exponent of −2.45; we provide a plausible mechanistic model that captures this form. Analysis of the high level of local clustering of contacts reveals additional structure within the network, implying that social contacts are degree assortative. Finally, we describe the epidemiological implications of this local network structure: these contradict the usual predictions from networks with heavy-tailed degree distributions and contain public-health messages about control. Our findings help us to determine the types of realistic network structure that should be assumed in future population level studies of infection transmission, leading to better interpretations of epidemiological data and more appropriate policy decisions

    Michael John Robert Fasham. 29 May 1942 — 7 June 2008

    Get PDF
    Professor Michael Fasham played a pioneering role in the development of marine ecosystem models for the study of nutrient and carbon cycling in the ocean. He is articularly celebrated for his famous Fasham–Ducklow–McKelvie model, which was the first of its kind to separate new and regenerated forms of nutrient, as well as including microbial recycling pathways. Fasham’s models provided key understanding of the links between primary production, carbon cycling and export (of organic matter from the surface to deep ocean) based on both deep and insightful parameterization inspired by his many collaborations with leading experimental and field biologists of the day, and by his expert use of data for model calibration and validation. He had the ability to see the big picture, linking observation and models to achieve a unified understanding of system dynamics. As well as the direct contributions of his own science, Fasham played a pivotal role in steering the international scientific agenda, notably his leadership of the Joint Global Ocean Flux Study which had the aim of understanding ocean carbon cycling and sinks via the coordination of extensive field programmes, synthesis and modelling. He will be remembered by those who knew him for his openness, enthusiasm and modesty, a man who was fun to know and to work with and who loved the thrill of scientific adventure and discovery

    Small Business Management: Using Assessment to Help Millennials Bridge the Gap Between the Classroom and Reality

    Get PDF
    The purpose of this paper is to explore students’ perceptions of entrepreneurship as a career path and match those perceptions with academic program assessment in an effort to help academic departments better prepare students for careers in small business management. As this is exploratory research, this paper employs methods that capture a broad perspective, collecting data from multiple sources over the last decade. Data obtained from multiple sources allows for a meaningful and thought-provoking discussion on methods academic departments can use to help prepare students for success. Additionally, the data, analysis, and discussion help inform academic professionals charged with making decisions about academic programming in this area. This paper also increases understanding of the entrepreneurial intentions of contemporary undergraduates (mostly millennials) and provides some encouragement, guidance, and lessons learned for academic departments, which are increasingly involved in assessment of academic programs and student learning. In the conclusion, we review the approach taken by one university in response to issues identified through assessment

    Vaginal Microbicides: Detecting Toxicities in Vivo that Paradoxically Increase Pathogen Transmission

    Get PDF
    BACKGROUND: Microbicides must protect against STD pathogens without causing unacceptable toxic effects. Microbicides based on nonoxynol-9 (N9) and other detergents disrupt sperm, HSV and HIV membranes, and these agents are effective contraceptives. But paradoxically N9 fails to protect women against HIV and other STD pathogens, most likely because it causes toxic effects that increase susceptibility. The mouse HSV-2 vaginal transmission model reported here: (a) Directly tests for toxic effects that increase susceptibility to HSV-2, (b) Determines in vivo whether a microbicide can protect against HSV-2 transmission without causing toxicities that increase susceptibility, and (c) Identifies those toxic effects that best correlate with the increased HSV susceptibility. METHODS: Susceptibility was evaluated in progestin-treated mice by delivering a low-dose viral inoculum (0.1 ID50) at various times after delivering the candidate microbicide to detect whether the candidate increased the fraction of mice infected. Ten agents were tested – five detergents: nonionic (N9), cationic (benzalkonium chloride, BZK), anionic (sodium dodecylsulfate, SDS), the pair of detergents in C31G (C14AO and C16B); one surface active agent (chlorhexidine); two non-detergents (BufferGel®, and sulfonated polystyrene, SPS); and HEC placebo gel (hydroxyethylcellulose). Toxic effects were evaluated by histology, uptake of a 'dead cell' dye, colposcopy, enumeration of vaginal macrophages, and measurement of inflammatory cytokines. RESULTS: A single dose of N9 protected against HSV-2 for a few minutes but then rapidly increased susceptibility, which reached maximum at 12 hours. When applied at the minimal concentration needed for brief partial protection, all five detergents caused a subsequent increase in susceptibility at 12 hours of ~20–30-fold. Surprisingly, colposcopy failed to detect visible sign of the N9 toxic effect that increased susceptibility at 12 hours. Toxic effects that occurred contemporaneously with increased susceptibility were rapid exfoliation and re-growth of epithelial cell layers, entry of macrophages into the vaginal lumen, and release of one or more inflammatory cytokines (Il-1β, KC, MIP 1α, RANTES). The non-detergent microbicides and HEC placebo caused no significant increase in susceptibility or toxic effects. CONCLUSION: This mouse HSV-2 model provides a sensitive method to detect microbicide-induced toxicities that increase susceptibility to infection. In this model, there was no concentration at which detergents provided protection without significantly increasing susceptibility.JHU Woodrow Wilson Fellowship; National Institutes of Health (Program Project A1 45967
    • …
    corecore