44 research outputs found

    Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Get PDF
    BACKGROUND: Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. RESULTS: We identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P < 0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P < 0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in young SOD2(+/- )and GPX4(+/- )mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. CONCLUSION: These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets

    Zoledronate extends healthspan and survival via the mevalonate pathway in a FOXO-dependent manner

    Get PDF
    Over recent decades, increased longevity has not been paralleled by extended healthspan, resulting in more years spent with multiple diseases in older age. As such, interventions to improve healthspan are urgently required. Zoledronate is a nitrogen containing bisphosphonate, which inhibits the farnesyl pyrophosphate synthase (FPPS) enzyme, central to the mevalonate pathway. It is already used clinically to prevent fractures in osteoporotic patients, who have been reported to derive unexpected and unexplained survival benefits. Using Drosophila as a model we determined the effects of Zoledronate on lifespan, parameters of healthspan (climbing ability and intestinal dysplasia) and the ability to confer resistance to oxidative stress using a combination of genetically manipulated Drosophila strains and Western blotting. Our study shows that Zoledronate extended lifespan, improved climbing activity and reduced intestinal epithelial dysplasia and permeability with age. Mechanistic studies showed that Zoledronate conferred resistance to oxidative stress and reduced accumulation of X-ray-induced DNA damage via inhibition of FPPS. Moreover, Zoledronate was associated with inhibition of pAKT in the mTOR pathway downstream of the mevalonate pathway and required dFOXO for its action, both molecules associated with increased longevity. Taken together, our work indicates that Zoledronate, a drug already widely used to prevent osteoporosis and dosed only once a year, modulates important mechanisms of ageing. Its repurposing holds great promise as a treatment to improve healthspan

    Detection of a novel, integrative aging process suggests complex physiological integration

    Get PDF
    Abstract: Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels ofmany biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women’s Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.); we call the process represented by the axis “integrated albunemia.” Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty – but not chronic disease – even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organizationmore generally

    Aging and Caloric Restriction Research: A Biological Perspective With Translational Potential

    No full text
    Aging as a research pursuit is fairly new compared with traditional lines of medical research. A growing field of investigators is focused on understanding how changes in tissue biology, physiology, and systemic homeostasis, conspire to create increased vulnerability to disease as a function of age. Aging research as a discipline is necessarily broad; in part because aging itself is multi-faceted and in part because different model systems are employed to define the underlying biology. In this review we outline aspects of aging research that are likely to uncover the pivotal events leading to age-related disease vulnerability. We focus on studies of human aging and discuss the value of research on caloric restriction, an intervention with proven efficacy in delaying aging. We propose that studies such as these will deliver target factors and processes that create vulnerability in human aging, an advance that would potentially be transformative in clinical care

    Sex and Aging

    No full text

    Prospects and Perspectives in Primate Aging Research

    No full text
    As improvements in standard of living and advances in medicine have resulted in greater life expectancy, the relative proportion of elderly has continued to increase in human populations across the globe. The primary goal of aging research is to gain a better understanding of the series of events that lead to increased frailty and disease vulnerability with age. The direct study of human aging is an active area of research; however, the opportunity to conduct mechanistic studies and gain insights into the underlying biology is limited. In this special forum issue of Antioxidant & Redox Signaling, we present a selection of articles and reviews that illustrate some of the recent advances in primate aging research. The overarching goal of this work is to underscore the potential for mechanistic discovery that is presented by nonhuman primate models, and to promote studies that validate novel approaches and techniques in nonhuman primates before their adaptation for human health care. Antioxid. Redox Signal. 14, 203–205

    Erratum to: COVID-19 Through the Lens of Gerontology

    No full text
    corecore