28,918 research outputs found

    The classification of 2-compact groups

    Full text link
    We prove that any connected 2-compact group is classified by its 2-adic root datum, and in particular the exotic 2-compact group DI(4), constructed by Dwyer-Wilkerson, is the only simple 2-compact group not arising as the 2-completion of a compact connected Lie group. Combined with our earlier work with Moeller and Viruel for p odd, this establishes the full classification of p-compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p-compact groups and root data over the p-adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen-Grodal-Moeller-Viruel methods to incorporate the theory of root data over the p-adic integers, as developed by Dwyer-Wilkerson and the authors, and we show that certain occurring obstructions vanish, by relating them to obstruction groups calculated by Jackowski-McClure-Oliver in the early 1990s.Comment: 47 page

    The C*-algebra of an affine map on the 3-torus

    Full text link
    We study the C*-algebra of an affine map on a compact abelian group and give necessary and sufficient conditions for strong transitivity when the group is a torus. The structure of the C*-algebra is completely determined for all strongly transitive affine maps on a torus of dimension one, two or three

    Reduced, tame and exotic fusion systems

    Full text link
    We define here two new classes of saturated fusion systems, reduced fusion systems and tame fusion systems. These are motivated by our attempts to better understand and search for exotic fusion systems: fusion systems which are not the fusion systems of any finite group. Our main theorems say that every saturated fusion system reduces to a reduced fusion system which is tame only if the original one is realizable, and that every reduced fusion system which is not tame is the reduction of some exotic (nonrealizable) fusion system

    Third-generation muffin-tin orbitals

    Full text link
    By the example of sp^3-bonded semiconductors, we illustrate what 3rd-generation muffin-tin orbitals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: sp^3d^10,sp^3, and bond orbitals. For isolated bands, it is possible to generate Wannier functions a priori. Also for bands, which overlap other bands, Wannier-like MTOs can be generated a priori. Hence, MTOs have a unique capability for providing chemical understanding.Comment: 13 pages, 8 eps figure

    The recurrence time of Dansgaard-Oeschger events and limits on the possible periodic component

    Full text link
    By comparing the high-resolution isotopic records from the GRIP and NGRIP icecores, we approximately separate the climate signal from local noise to obtain an objective criterion for defining Dansgaard-Oeschger events. Our analysis identifies several additional short lasting events, increasing the total number of DO events to 27 in the period 12-90 kyr BP. The quasi-regular occurrence of the DO events could indicate a stochastic or coherent resonance mechanism governing their origin. From the distribution of waiting times we obtain a statistical upper bound on the strength of a possible periodic forcing. This finding indicates that the climate shifts are purely noise driven with no underlying periodicity.Comment: 9 figure

    First-principles scattering matrices for spin-transport

    Get PDF
    Details are presented of an efficient formalism for calculating transmission and reflection matrices from first principles in layered materials. Within the framework of spin density functional theory and using tight-binding muffin-tin orbitals, scattering matrices are determined by matching the wave-functions at the boundaries between leads which support well-defined scattering states and the scattering region. The calculation scales linearly with the number of principal layers N in the scattering region and as the cube of the number of atoms H in the lateral supercell. For metallic systems for which the required Brillouin zone sampling decreases as H increases, the final scaling goes as H^2*N. In practice, the efficient basis set allows scattering regions for which H^{2}*N ~ 10^6 to be handled. The method is illustrated for Co/Cu multilayers and single interfaces using large lateral supercells (up to 20x20) to model interface disorder. Because the scattering states are explicitly found, ``channel decomposition'' of the interface scattering for clean and disordered interfaces can be performed.Comment: 22 pages, 13 figure

    Interplay between nanometer-scale strain variations and externally applied strain in graphene

    Get PDF
    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the non-linear elastic properties of graphene, both trends together yield a non-monotonic variation of the total displacements with increasing tensile strain. This variation allows to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples

    Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type

    Full text link
    Calculations employing the local density approximation combined with static and dynamical mean-field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mott-Hubbard transition, but is caused by orbital splitting of the majority-spin eg bands. For LaMnO3 to be insulating at pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller distortion are needed.Comment: 4 pages, 3 figure

    Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model

    Full text link
    The equilibrium structure, energy bands, phonon dispersions, and s- and d-channel electron-phonon interactions (EPIs) are calculated for the infinite-layer superconductor CaCuO2 doped with 0.24 holes per CuO2. The LDA and the linear-response full-potential LMTO method were used. In the equilibrium structure, oxygen is found to buckle slightly out of the plane and, as a result, the characters of the energy bands near EF are found to be similar to those of other optimally doped HTSCs. For the EPI we find lambda(s)=0.4, in accord with previous LDA calculations for YBa2Cu3O7. This supports the common belief that the EPI mechanism alone is insufficient to explain HTSC. Lambda(x^2-y^2) is found to be positive and nearly as large as lambda(s). This is surprising and indicates that the EPI could enhance some other d-wave pairing mechanism. Like in YBa2Cu3O7, the buckling modes contribute significantly to the EPI, although these contributions are proportional to the static buckling and would vanish for flat planes. These numerical results can be understood from a generic tight-binding model originally derived from the LDA bands of YBa2Cu3O7. In the future, the role of anharmonicity of the buckling-modes and the influence of the spin-fluctuations should be investigated.Comment: 19 pages, 9 Postscript figures, Late
    • …
    corecore