1,740 research outputs found

    Self-contained Kondo effect in single molecules

    Full text link
    Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.Comment: 4 pages, 5 figures (eps

    Scaled Chrysophyceae From Lake Itasca Region. ll. Synura, Chrysophaerella, Spiniferomonas

    Get PDF
    Using electron microscopy, 49 plankton samples from the Lake Itasca region were examined for the silica-scaled chrysophycean genera Synura, Chrysosphaerella and Spiniferomonas. Twelve taxa were observed: five are new for Minnesota, and two of these, Synura multidenta and Synura petersenil f. asmundiae, are new reports for the continental United States

    Severity scoring of manganese health effects for categorical regression

    Get PDF
    Characterizing the U-shaped exposure response relationship for manganese (Mn) is necessary for estimating the risk of adverse health from Mn toxicity due to excess or deficiency. Categorical regression has emerged as a powerful tool for exposure-response analysis because of its ability to synthesize relevant information across multiple studies and species into a single integrated analysis of all relevant data. This paper documents the development of a database on Mn toxicity designed to support the application of categorical regression techniques. Specifically, we describe (i) the conduct of a systematic search of the literature on Mn toxicity to gather data appropriate for dose-response assessment; (ii) the establishment of inclusion/exclusion criteria for data to be included in the categorical regression modeling database; (iii) the development of a categorical severity scoring matrix for Mn health effects to permit the inclusion of diverse health outcomes in a single categorical regression analysis using the severity score as the outcome variable; and (iv) the convening of an international expert panel to both review the severity scoring matrix and assign severity scores to health outcomes observed in studies (including case reports, epidemiological investigations, and in vivo experimental studies) selected for inclusion in the categorical regression database. Exposure information including route, concentration, duration, health endpoint(s), and characteristics of the exposed population was abstracted from included studies and stored in a computerized manganese database (MnDB), providing a comprehensive repository of exposure-response information with the ability to support categorical regression modeling of oral exposure data

    Walker use, but not falls, is associated with lower physical functioning and health of residents in an assisted-living environment

    Get PDF
    The relationship between perceived health and walker use has seldom been addressed. Concerns over falls and falls risk are precursors to walker use. We compared the SF-36 scores of 26 women and 14 men, mean age 86.8 ± 6.0 years based on walker use and faller status. An analysis of covariance (ANCOVA) with age as the covariate, compared groups for the SF-36 constructs and totals score. Significant differences were noted between walker users and nonusers in physical functioning, role limitations due to physical problems, general health, and the total SF-36 score. Pairwise comparisons favored nonusers, while no differences were seen due to faller status. Walker use is associated with lower self-perceptions of physical functioning, role limitations due to physical problems, and general health in assisted-living residents. Faller status is not associated with self-perceived health status. Although walker use aids mobility and lowers the probability of falls, further research is needed to determine if the prescription of assistive devices has a more negative impact on self-perceived health than does falling. This possibility could be explained, in part, by the greater activity levels of those individuals who do not depend on walkers

    Pilot-Scale Testing of Non-Activated Biochar for Swine Manure Treatment and Mitigation of Ammonia, Hydrogen Sulfide, Odorous Volatile Organic Compounds (VOCs), and Greenhouse Gas Emissions

    Get PDF
    Managing the environmental impacts associated with livestock production is a challenge for farmers, public and regulatory agencies. Sustainable solutions that take into account technical and socioeconomic factors are needed. For example, the comprehensive control of odors, ammonia (NH3), hydrogen sulfide (H2S), and greenhouse gas (GHG) emissions from swine production is a critical need. Stored manure is a major source of gaseous emissions. Mitigation technologies based on bio-based products such as biochar are of interest due to the potential benefits of nutrient cycling. The objective of this study was to test non-activated (non-functionalized) biochar for the mitigation of gaseous emissions from stored manure. Specifically, this included testing the effects of: (1) time; and (2) dosage of biochar application to the swine manure surface on gaseous emissions from deep-pit storage. The biochar surface application was tested with three treatments (1.14, 2.28 and 4.57 kg·m−2 manure) over a month. Significant reductions in emissions were observed for NH3 (12.7–22.6% reduction as compared to the control). Concomitantly, significant increases in CH4emissions (22.1–24.5%) were measured. Changes to emissions of other target gases (including CO2, N2O, H2S, dimethyl disulfide/methanethiol, dimethyl trisulfide, n-butyric-, valeric-, and isovaleric acids, p-cresol, indole, and skatole) were not statistically significant. Biochar treatment could be a promising and comparably-priced option for reducing NH3emissions from stored swine manure

    Spatial selectivity in human ventrolateral prefrontal cortex

    Get PDF
    The functional organization of lateral prefrontal cortex is not well understood, and there is debate as to whether the dorsal and ventral aspects mediate distinct spatial and non-spatial functions, respectively. We show for the first time that recordings from human ventrolateral prefrontal cortex show spatial selectivity, supporting the idea that ventrolateral prefrontal cortex is involved in spatial processing. Our results also indicate that prefrontal cortex may be a source of control signals for neuroprosthetic applications

    Nanodiamonds carrying quantum emitters with almost lifetime-limited linewidths

    Get PDF
    Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical transitions for SiV colour centers hosted in nanodiamonds produced using a novel high-pressure high-temperature (HPHT) technique. The SiV zero-phonon lines were measured to have an inhomogeneous distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual spectral lines as narrow as 354 MHz were measured for SiV centres in nanodiamonds smaller than 200 nm, which is four times narrower than the best SiV line previously reported for nanodiamonds. Correcting for apparent spectral diffusion yielded a homogeneous linewith of about 200 MHz, which is close to the width limit imposed by the radiative lifetime. These results demonstrate that the direct HPHT synthesis technique is capable of producing nanodiamonds with high crystal lattice quality, which are therefore a valuable technical material

    The Impact of Carbohydrate and Protein Level and Sources on Swine Manure Foaming Properties

    Get PDF
    This study explored the impact of swine diet on the composition, methane production potential, and foaming properties of manure. Samples of swine manure were collected from controlled feeding trials with diets varying in protein and carbohydrate levels and sources. Protein sources consisted of corn with amino acids, corn-soybean meal with amino acids, corn-soybean meal, corn-canola meal, corn-corn gluten meal, and corn-poultry meal. Carbohydrate sources consisted of corn-soybean meal, barley, beet pulp, distillers dried grains with solubles (DDGS), soy hulls, and wheat bran. Manure samples were tested for a number of physical and biochemical parameters, including total solids, volatile solids, viscosity, density, methane production rate, biochemical methane potential, foaming capacity, and foam stability. Statistical analyses were performed to evaluate whether different carbohydrate and/or protein ingredients affected these physico-chemical properties or the samples’ ability to produce methane gas. After conducting these trials, another feeding trial was performed to evaluate if the addition of Narasin into rations (corn-soybean and DDGS) could reduce the methane production rate or potential of the manure. These samples were also tested for the physical and biochemical parameters mentioned previously. Finally, an additional manure foaming study was conducted involving the addition of specific carbohydrates ground to different particle sizes and corn oil to observe the effects that the additives had on foaming capacity and stability

    Three-Phase Foam Analysis and the Development of a Lab-Scale Foaming Capacity and Stability Test for Swine Manures

    Get PDF
    Foam accumulation on the manure slurry at deep pit swine facilities has been linked to flash fire incidents, making it a serious safety concern for pork producers. In order to investigate this phenomenon, samples of swine manure were collected from over 50 swine production facilities in Iowa with varying levels of foam accumulation over a seven month period. These samples were tested for a number of physical and chemical parameters including temperature, pH, total solids, volatile solids, volatile fatty acid concentration, biochemical methane potential, and methane production rate. After establishing these parameters, a foaming capacity and stability test was performed where samples were placed in clear PVC tubes with air diffusers at the bottom to simulate biogas production. The amount of foam produced at a set aeration rate was recorded as a measure of foaming capacity, and foam stability was assessed by measuring the height of foam remaining at certain time intervals after aeration had ceased. The results of this test indicated that samples collected from foaming barns showed a greater capacity to produce and stabilize foam. In addition, statistical analysis indicated that manures with foam produced methane at significantly greater rates than non-foaming manures (0.154 ± 0.010 and 0.052 ± 0.003 L CH4./L slurry*day respectively, average standard error), and consequently had significantly greater fluxes of methane moving through the manure volume. On the other hand, the biochemical methane production assay suggested that manure from foaming pits had less potential to generate methane (112 ± 9 mL CH4/g VS) than non-foaming pits (129 ± 9 mL CH4/g VS), and the VFA analysis showed significantly lower concentrations in foaming pits (4472, 3486, and 1439 μg/g for the surface level and descending depths of the pit, respectively) as compared to non-foaming pits (9385,8931, and 6938 μg/g for the same sample depths). When taken together, these assays suggest enhanced anaerobic digestion efficiency from foaming barns, as well as the possible accumulation of a surfactant at the manure-air interface of foaming deep pits. Overall, this work supports a three-phase system conceptualization of foam production in swine manure deep pits, and that the control of one or more of these phases will be required for mitigation
    corecore