48 research outputs found

    Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices

    Get PDF
    The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance and poor prognosis. Wound-healing related myofibroblasts or activated cancer-associated fibroblasts (CAF) are assumed to be the major sources of HA. Both cell types are capable to synthesize new matrix components as well as reorganize the extracellular matrix. However, to which extent myofibroblasts and CAF perform these actions are still unclear. In this work, we investigated the matrix remodeling and HA production potential in normal human dermal fibroblasts (NHFB) and CAF in the absence and presence of transforming growth factor beta -1 (TGF-β1), with TGF-β1 being a major factor of regulating fibroblast differentiation. Three-dimensional (3D) collagen matrix was utilized to mimic the extracellular matrix of the tumor microenvironment. We found that CAF appeared to response insensitively towards TGF-β1 in terms of cell proliferation and matrix remodeling when compared to NHFB. In regards of HA production, we found that both cell types were capable to produce matrix bound HA, rather than a soluble counterpart, in response to TGF-β1. However, activated CAF demonstrated higher HA production when compared to myofibroblasts. The average molecular weight of produced HA was found in the range of 480 kDa for both cells. By analyzing gene expression of HA metabolizing enzymes, namely hyaluronan synthase (HAS1-3) and hyaluronidase (HYAL1-3) isoforms, we found expression of specific isoforms in dependence of TGF-β1 present in both cells. In addition, HAS2 and HYAL1 are highly expressed in CAF, which might contribute to a higher production and degradation of HA in CAF matrix. Overall, our results suggested a distinct behavior of NHFB and CAF in 3D collagen matrices in the presence of TGF-β1 in terms of matrix remodeling and HA production pointing to a specific impact on tumor modulation

    Topologically defined composites of collagen type I and V as in vitro cell culture scaffolds

    Get PDF
    Cell fate is known to be triggered by cues from the extracellular matrix including its chemical, biological and physical characteristics. Specifically, mechanical and topological properties are increasingly recognized as important signals. The aim of this work was to provide an easy-accessible biomimetic in vitro platform of topologically defined collagen I matrices to dissect cell behaviour under various conditions in vitro. We reconstituted covalently bound layers of three-dimensional (3D) networks of collagen type I and collagen type V with a defined network topology. A new erosion algorithm enabled us to analyse the mean pore diameter and fibril content, while the mean fibril diameter was examined by an autocorrelation method. Different concentrations and ratios of collagen I and V resulted in pore diameters from 2.4 ÎĽm to 4.5 ÎĽm and fibril diameters from 0.6 to 0.8 ÎĽm. A comparison of telopeptide intact collagen I to telopeptide deficient collagen I revealed obvious differences in network structure. The good correlation of the topological data to measurements of network stiffness as well as invasion of human dermal fibroblasts proofed the topological analysis to provide meaningful measures of the functional characteristics of the reconstituted 3D collagen matrices

    Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model

    Get PDF
    Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration

    Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices

    Get PDF
    Hyaluronan (HA) and its principal receptor CD44 are known to be involved in regulating tumor cell dissemination and metastasis. It is hypothesized that the CD44-HA interaction regulates proliferation and invasion of tumor cells in dependence on the molecular weight and the presentation form of HA. To address this hypothesis, we reconstituted 3D collagen (Coll I) matrices and functionalized them with HA of molecular weight of 30-50 kDa (low molecular weight; LMW-HA) and 500-750 kDa (high molecular weight; HMW-HA). A post-modification strategy was applied to covalently immobilize HA to reconstituted fibrillar Coll I matrices, resulting in a non-altered Coll I network microstructure and stable immobilization over days. Functionalized Coll I matrices were characterized regarding topological and mechanical characteristics as well as HA amount using confocal laser scanning microscopy, colloidal probe force spectroscopy and quantitative Alcian blue assay, respectively. To elucidate tumor cell behavior, BRO melanoma cell lines with and without CD44 receptor expression were used for in vitro cell experiments. We demonstrated that only soluble LMW-HA promoted cell proliferation in a CD44 dependent manner, while HMW-HA and immobilized LMW-HA did not. Furthermore, an enhanced cell invasion was found only for immobilized LMW-HA. Both findings correlated with a very strong and specific adhesive interaction of LMW-HA and CD44+ cells quantified in single cell adhesion measurements using soft colloidal force spectroscopy. Overall, our results emphasize the importance of presentation mode and molecular weight specificity in biomaterial studies on the impact of HA on cell behavior

    Novel Regulatory Mechanisms for Generation of the Soluble Leptin Receptor: Implications for Leptin Action

    Get PDF
    The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity.To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding.Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases

    Topologically defined composites of collagen type I and V as in vitro cell culture scaffolds

    Get PDF
    Cell fate is known to be triggered by cues from the extracellular matrix including its chemical, biological and physical characteristics. Specifically, mechanical and topological properties are increasingly recognized as important signals. The aim of this work was to provide an easy-accessible biomimetic in vitro platform of topologically defined collagen I matrices to dissect cell behaviour under various conditions in vitro. We reconstituted covalently bound layers of three-dimensional (3D) networks of collagen type I and collagen type V with a defined network topology. A new erosion algorithm enabled us to analyse the mean pore diameter and fibril content, while the mean fibril diameter was examined by an autocorrelation method. Different concentrations and ratios of collagen I and V resulted in pore diameters from 2.4 ÎĽm to 4.5 ÎĽm and fibril diameters from 0.6 to 0.8 ÎĽm. A comparison of telopeptide intact collagen I to telopeptide deficient collagen I revealed obvious differences in network structure. The good correlation of the topological data to measurements of network stiffness as well as invasion of human dermal fibroblasts proofed the topological analysis to provide meaningful measures of the functional characteristics of the reconstituted 3D collagen matrices

    IL17F Expression as an Early Sign of Oxidative Stress-Induced Cytotoxicity/Apoptosis

    No full text
    Interleukin 17F (IL17F) has been found to be involved in various inflammatory pathologies and has recently become a target for therapeutic purposes. In contrast to IL17F secreted by immune cells, the focus of this study is to describe the triggers of IL17F release in non-immune cells with a particular focus on IL17F-induced fibrosis. IL17F induction was examined in human lung epithelial (BEAS-2B) and myeloid cell lines as well as in peripheral blood mononuclear cells after in vitro exposure to aqueous cigarette smoke extract (CSE), inorganic mercury, cadmium or the apoptosis inducer brefeldin A. Fibrosis was examined in vitro, evaluating the transition of human primary dermal fibroblasts to myofibroblasts. We observed that all stressors were able to induce IL17F gene expression regardless of cell type. Interestingly, its induction was associated with cytotoxic/apoptotic signs. Inhibiting oxidative stress by N-acetylcysteine abrogated CSE-induced cytotoxic and IL17F- inducing effects. The induction of IL17F was accompanied by IL17F protein expression. The transition of fibroblasts into myofibroblasts was not influenced by either recombinant IL17F or supernatants of CSE-exposed BEAS-2B. In addition to IL17F secretion by specialized or activated immune cells, we underscored the cell type-independent induction of IL17F by mechanisms of inhibitable oxidative stress-induced cytotoxicity. However, IL17F was not involved in dermal fibrosis under the conditions used in this study
    corecore