262 research outputs found
The availability and geographic location of open-source food composition data used to estimate micronutrient intakes in sub-Saharan Africa: A scoping review
Background
Estimates of dietary micronutrient intakes rely on food composition data. The nutrient composition of foods varies spatially with potentially large effects on dietary micronutrient intakes. This review assessed the availability and geographic origin of five minerals (calcium, iron, iodine, selenium and zinc) in publicly available food composition tables/databases (FCTs) for use in sub-Saharan Africa (SSA).
Methods
A scoping review was conducted following PRISMA guidelines, in which four databases (MEDLINE, Embase, Global Health and Africa Wide Information) and four online resources were searched to identify published FCTs for use in SSA. Metadata were reviewed to identify the geographic origin of composition values for selected foods.
Results
Nineteen publicly available FCTs were identified, with the highest geographic coverage in Eastern Africa (45% of countries) and lowest coverage in Central Africa (12% of countries). Iodine and selenium were reported in four and six FCTs, respectively, while iron and calcium were included in ≥ 18 FCTs. More than 60% of nutrient values were borrowed from other FCTs. The geographic origin of 22% of mineral values were documented.
Conclusions
Limited local food composition analytical data is available, for estimating mineral intakes of SSA populations, with poor documentation of the data sources and the geographic origins of samples. New data structures and improved metadata are required to capture and report geographic information in publicly available FCTs, and to accommodate a new generation of spatially-resolved food composition data
Recommended from our members
Demonstration of a light-redirecting skylight system at the Palm Springs Chamber of Commerce
As part of a demonstration project to provide a comprehensive energy upgrade to a 294 m{sup 2} (3168 ft{sup 2}) commercial building, an advanced skylight design was developed using optical light control materials and geometry to provide daylight to two adjoining offices. The skylight system was developed using outdoor physical model tests and simulation tools Limited on-site measurements and occupant polls were conducted. Market issues were addressed. The skylight systems were found to improve lighting quality and to control excessive daylight illuminance levels compared to a conventional diffusing bubble skylight. Daylighting principles developed in earlier work for vertical glazing systems (light shelves and light pipes) were shown to be applicable in skylight designs at full-scale
Agronomic biofortification increases grain zinc concentration of maize grown under contrasting soil types in Malawi
Zinc (Zn) deficiency remains a public health problem in Malawi, especially among poor and marginalized rural populations, linked with low dietary intake of Zn due to consumption of staple foods that are low in Zn content. The concentration of Zn in staple cereal grain can be increased through application of Zn-enriched fertilizers, a process called agronomic biofortification or agro-fortification. Field experiments were conducted at three Agricultural Research Station sites to assess the potential of agronomic biofortification to improve Zn concentration in maize grain in Malawi as described in registered report published previously. The hypotheses of the study were (i) that application of Zn-enriched fertilizers would increase in the concentration of Zn in maize grain to benefit dietary requirements of Zn and (ii) that Zn concentration in maize grain and the effectiveness of agronomic biofortification would be different between soil types. At each site two different subsites were used, each corresponding to one of two agriculturally important soil types of Malawi, Lixisols and Vertisols. Within each subsite, three Zn fertilizer rates (1, 30, and 90 kg ha−1) were applied to experimental plots, using standard soil application methods, in a randomized complete block design. The experiment had 10 replicates at each of the three sites as informed by a power analysis from a pilot study, published in the registered report for this experiment, designed to detect a 10% increase in grain Zn concentration at 90 kg ha−1, relative to the concentration at 1 kg ha−1. At harvest, maize grain yield and Zn concentration in grain were measured, and Zn uptake by maize grain and Zn harvest index were calculated. At 30 kg ha−1, Zn fertilizer increased maize grain yields by 11% compared with nationally recommended application rate of 1 kg ha−1. Grain Zn concentration increased by 15% and uptake by 23% at the application rate of 30 kg ha−1 relative to the national recommendation rate. The effects of Zn fertilizer application rate on the response variables were not dependent on soil type. The current study demonstrates the importance of increasing the national recommendation rate of Zn fertilizer to improve maize yield and increase the Zn nutritional value of the staple crop
Modes of Foreign Entry under Asymmetric Information about Potential Technology Spillovers
This paper studies the effect of technology spillovers on the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. We find that with quantity competition a spillover makes acquisitions less attractive, while with price competition acquisitions become more attractive. Asymmetric information about potential spillovers always reduces the number of
acquisitions independently of whether the host country or the entrant has private information. Interestingly, we find that asymmetric information always hurts the entrant, while it sometimes is in favor of the host country
Asymptomatic bacteriuria in sickle cell disease: a cross-sectional study
BACKGROUND: It is known that there is significant morbidity associated with urinary tract infection and with renal dysfunction in sickle cell disease (SCD). However, it is not known if there are potential adverse outcomes associated with asymptomatic bacteriuria (ASB) infections in sickle cell disease if left untreated. This study was undertaken to determine the prevalence of ASB, in a cohort of patients with SCD. METHODS: This is a cross-sectional study of patients in the Jamaican Sickle Cell Cohort. Aseptically collected mid-stream urine (MSU) samples were obtained from 266 patients for urinalysis, culture and sensitivity analysis. Proteinuria was measured by urine dipsticks. Individuals with abnormal urine culture results had repeat urine culture. Serum creatinine was measured and steady state haematology and uric acid concentrations were obtained from clinical records. This was completed at a primary care health clinic dedicated to sickle cell diseases in Kingston, Jamaica. There were 133 males and 133 females in the sample studied. The mean age (mean ± sd) of participants was 26.6 ± 2.5 years. The main outcome measures were the culture of ≥ 10(5 )colony forming units of a urinary tract pathogen per milliliter of urine from a MSU specimen on a single occasion (probable ASB) or on consecutive occasions (confirmed ASB). RESULTS: Of the 266 urines collected, 234 were sterile and 29 had significant bacteriuria yielding a prevalence of probable ASB of 10.9% (29/266). Fourteen patients had confirmed ASB (prevalence 5.3%) of which 13 had pyuria. Controlling for genotype, females were 14.7 times more likely to have confirmed ASB compared to males (95%CI 1.8 to 121.0). The number of recorded visits for symptomatic UTI was increased by a factor of 2.5 (95% CI 1.4 to 4.5, p < 0.005) but serum creatinine, uric acid and haematology values were not different in patients with confirmed ASB compared with those with sterile urine. There was no association with history of gram negative sepsis. CONCLUSION: ASB is a significant problem in individuals with SCD and may be the source of pathogens in UTI. However, further research is needed to determine the clinical significance of ASB in SCD
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans
Whole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24 hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans. Human studies show gene expression changes following ischemic stroke. These gene profiles predict a second cohort with >90% sensitivity and specificity. Gene profiles for ischemic stroke caused by large-vessel atherosclerosis and cardioembolism have been described that predict a second cohort with >85% sensitivity and specificity. Atherosclerotic genes were associated with clotting, platelets, and monocytes, and cardioembolic genes were associated with inflammation, infection, and neutrophils. These gene profiles predicted the cause of stroke in 58% of cryptogenic patients. These studies will provide diagnostic, prognostic, and therapeutic markers, and will advance our understanding of stroke in humans. New techniques to measure all coding and noncoding RNAs along with alternatively spliced transcripts will markedly advance molecular studies of human stroke
Biofortified Maize Improves Selenium Status of Women and Children in a Rural Community in Malawi: Results of the Addressing Hidden Hunger With Agronomy Randomized Controlled Trial
Background: Selenium deficiency is widespread in the Malawi population. The selenium concentration in maize, the staple food crop of Malawi, can be increased by applying selenium-enriched fertilizers. It is unknown whether this strategy, called agronomic biofortification, is effective at alleviating selenium deficiency.
Objectives: The aim of the Addressing Hidden Hunger with Agronomy (AHHA) trial was to determine whether consumption of maize flour, agronomically-biofortified with selenium, affected the serum selenium concentrations of women, and children in a rural community setting.
Design: An individually-randomized, double-blind placebo-controlled trial wasconducted in rural Malawi. Participants were randomly allocated in a 1:1 ratio to receive either intervention maize flour biofortified with selenium through application of selenium fertilizer, or control maize flour not biofortified with selenium. Participant households
received enough flour to meet the typical consumption of all household members (330 g capita−1 day−1) for a period of 8 weeks. Baseline and endline serum selenium concentration (the primary outcome) was measured by inductively coupled plasma mass spectrometry (ICP-MS).
Results: One woman of reproductive age (WRA) and one school-aged child (SAC) from each of 180 households were recruited and households were randomized to each group. The baseline demographic and socioeconomic status of participants were well-balanced between arms. No serious adverse events were reported. In the intervention arm, mean (standard deviation) serum selenium concentration increased over the intervention period from 57.6 (17.0) μg L−1 (n = 88) to 107.9 (16.4) μg L−1 (n = 88) among WRA and from 46.4 (14.8) μg L−1 (n = 86) to 97.1 (16.0) μg L−1 (n = 88) among SAC. There was no evidence of change in serum selenium concentration in the control groups
Conclusion: Consumption of maize flour biofortified through application of selenium-enriched fertilizer increased selenium status in this community providing strong proof of principle that agronomic biofortification could be an effective approach to address selenium deficiency in Malawi and similar settings.
Clinical Trial Registration http://www.isrctn.com/ISRCTN85899451, identifier:
ISRCTN85899451
Assessing the residual benefit of soil-applied zinc on grain zinc nutritional quality of maize grown under contrasting soil types in Malawi.
A proper understanding of the residual value of zinc (Zn) is necessary for sustainable biofortification of food crops. This study aimed to establish the extent to which application of Zn at the national rate, plus two experimentally elevated rates, in one year provided any benefit to plant yield and nutritional quality in the following growing season. Residual effects of soil-applied Zn on grain Zn concentration and uptake were estimated by an experiment in which maize was grown in successive seasons at two agricultural research stations in Malawi, with Zn applied to the soil in the first season but not the second. At each site two common soil types were used: Lixisols and Vertisols. The study used three Zn fertilizer rates of 1, 30 and 90 kg Zn ha -1 applied to the soil in the previous cropping season, arranged in a randomized complete block design (RCBD) with 10 replications at each experimental site. At harvest, maize grain yield and Zn concentration in grain and stover were measured; Zn uptake by maize grain and stover were determined and Zn harvest index was calculated. Effects on grain yield and Zn uptake by the crop were assessed in relation to residual Zn fertilizer and soil type. Maize grain yield on plots in the second season where 30 kg Zn ha -1 had been applied exceeded that on second season plots where 1 kg Zn ha -1 had been applied by 25%. The grain Zn concentration and Zn uptake in the second season after fertilizer application were larger by 13% and 30% respectively on the plots which had received 30 kg Zn ha -1 than those which had received 1 kg Zn ha -1 . There was no evidence that applying Zn at 90 kg Zn ha -1 resulted in larger crop yield, grain Zn concentration, or Zn uptake the second year after application than was seen in plots the second year after application of 30 kg Zn ha -1 . The magnitude of the benefits attributed to residual effects of soil-applied Zn did not depend on soil type. Conclusively, the residual effects of 30 kg ha -1 of soil-applied Zn in the preceding season benefited the subsequent maize compared to the national recommendation of 1 kg Zn ha -1 . The benefits of larger applications of Zn than the current national recommendations should be considered across at least two seasons and for different crops
- …