238 research outputs found
Entrainment, motion and deposition of coarse particles transported by water over a sloping mobile bed
In gravel-bed rivers, bedload transport exhibits considerable variability in
time and space. Recently, stochastic bedload transport theories have been
developed to address the mechanisms and effects of bedload transport
fluctuations. Stochastic models involve parameters such as particle
diffusivity, entrainment and deposition rates. The lack of hard information on
how these parameters vary with flow conditions is a clear impediment to their
application to real-world scenarios. In this paper, we determined the closure
equations for the above parameters from laboratory experiments. We focused on
shallow supercritical flow on a sloping mobile bed in straight channels, a
setting that was representative of flow conditions in mountain rivers.
Experiments were run at low sediment transport rates under steady nonuniform
flow conditions (i.e., the water discharge was kept constant, but bedforms
developed and migrated upstream, making flow nonuniform). Using image
processing, we reconstructed particle paths to deduce the particle velocity and
its probability distribution, particle diffusivity, and rates of deposition and
entrainment. We found that on average, particle acceleration, velocity and
deposition rate were responsive to local flow conditions, whereas entrainment
rate depended strongly on local bed activity. Particle diffusivity varied
linearly with the depth-averaged flow velocity. The empirical probability
distribution of particle velocity was well approximated by a Gaussian
distribution when all particle positions were considered together. In contrast,
the particles located in close vicinity to the bed had exponentially
distributed velocities. Our experimental results provide closure equations for
stochastic or deterministic bedload transport models.Comment: Submitted to Journal of Geophysical Researc
Stationary shear flows of dense granular materials : a tentative continuum modelling
We propose a simple continuum model to interpret the shearing motion of
dense, dry and cohesion-less granular media. Compressibility, dilatancy and
Coulomb-like friction are the three basic ingredients. The granular stress is
split into a rate-dependent part representing the rebound-less impacts between
grains and a rate-independent part associated with long-lived contacts. Because
we consider stationary flows only, the grain compaction and the grain velocity
are the two main variables. The predicted velocity and compaction profiles are
in apparent agreement with the experimental or numerical results concerning
free-surface shear flows as well as confined shear flow
0-level Vacuum Packaging RT Process for MEMS Resonators
A new Room Temperature (RT) 0-level vacuum package is demonstrated in this
work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural
layer. The process is compatible with most of MEMS resonators and Resonant
Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on
the influence of releasing hole dimensions on the releasing time and hole
clogging. It discusses mass production compatibility in terms of packaging
stress during back-end plastic injection process. The packaging is done at room
temperature making it fully compatible with IC-processed wafers and avoiding
any subsequent degradation of the active devices.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Segregation of large particles in dense granular flows: A granular Saffman effect?
We report on the scaling between the lift force and the velocity lag
experienced by a single particle of different size in a monodisperse dense
granular chute flow. The similarity of this scaling to the Saffman lift force
in (micro) fluids, suggests an inertial origin for the lift force responsible
for segregation of (isolated, large) intruders in dense granular flows. We also
observe an anisotropic pressure/stress field surrounding the particle, which
potentially lies at the origin of the velocity lag. These findings are relevant
for modelling and theoretical predictions of particle-size segregation. At the
same time, the suggested interplay between polydispersity and inertial effects
in dense granular flows with stress- and strain-gradients, implies striking new
parallels between fluids, suspensions and granular flows with wide application
perspectives
Entrainment and motion of coarse particles in a shallow water stream down a steep slope
We investigate the entrainment, deposition and motion of coarse spherical particles within a turbulent shallow water stream down a steep slope. This is an idealization of bed-load transport in mountain streams. Earlier investigations have described this kind of sediment transport using empirical correlations or concepts borrowed from continuum mechanics. The intermittent character of particle transport at low-water discharges led us to consider it as a random process. Sediment transport in this regime results from the imbalance between entrainment and deposition of particles rather than from momentum balance between water and particles. We develop a birth-death immigration-emigration Markov process to describe the particle exchanges between the bed and the water stream. A key feature of the model is its long autocorrelation times and wide, frequent fluctuations in the solid discharge, a phenomenon never previously explained despite its ubiquity in both nature and laboratory experiments. We present experimental data obtained using a nearly two-dimensional channel and glass beads as a substitute for sediment. Entrainment, trajectories, and deposition were monitored using a high-speed digital camera. The empirical probability distributions of the solid discharge and deposition frequency were properly described by the theoretical model. Experiments confirmed the existence of wide and frequent fluctuations of the solid discharge, and revealed the existence of long autocorrelation time, but theory overestimates the autocorrelation times by a factor of around three. Particle velocity was weakly dependent on the fluid velocity contrary to the predictions of the theoretical model, which performs well when a single particle is moving. For our experiments, the dependence of the solid discharge on the fluid velocity is entirely controlled by the number of moving particles rather than by their velocity. We also noted significant changes in the behaviour of particle transport when the bed slope or the water discharge was increased. The more vigorous the stream was, the more continuous the solid discharge became. Moreover, although 90% of the energy supplied by gravity to the stream is dissipated by turbulence for slopes lower than 10%, particles dissipate more and more energy when the bed slope is increased, but surprisingly, the dissipation rate is nearly independent of fluid velocity. A movie is available with the online version of the pape
MEMS tunable capacitors with fragmented electrodes and rotational electro-thermal drive
This paper reports on the design, simulation and fabrication of tunable MEMS capacitors with fragmented metal (AlSi 4%) electrodes. We examine a rotational electro-thermal actuation. An analytic model of the rotational effect thermal actuator was established in order to show the periodicity of the capacitance when the angle increases. Evaluation of the impact of fringing fields on the capacitance has been carried out using finite element analysis (FEA). The MEMS capacitors were fabricated using metal surface micromachining with polyimide sacrificial layer. The maximum rotation, corresponding to a maximum angle of 7°, was obtained near 1.2V and 299mA. The proposed capacitor has a practical tuning range of 30%. FEA has shown that this figure can be improved with design optimization. The MEMS architecture based on rotational effect and fragmented electrodes does not suffer from the pull in effect and offers a practical solution for future above-IC capacitor
Plug flow and the breakdown of Bagnold scaling in cohesive granular flows
Cohesive granular media flowing down an inclined plane are studied by
discrete element simulations. Previous work on cohesionless granular media
demonstrated that within the steady flow regime where gravitational energy is
balanced by dissipation arising from intergrain forces, the velocity profile in
the flow direction scales with depth in a manner consistent with the
predictions of Bagnold. Here we demonstrate that this Bagnold scaling does not
hold for the analogous steady-flows in cohesive granular media. We develop a
generalization of the Bagnold constitutive relation to account for our
observation and speculate as to the underlying physical mechanisms responsible
for the different constitutive laws for cohesive and noncohesive granular
media.Comment: 8 pages, 10 figure
Statistical description of sediment transport experiments
A longstanding problem in the study of sediment transport in gravel-bed rivers is related to the physical mechanisms governing bed resistance and particle motion. To study this problem, we investigated the motion of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep twodimensional channel with a mobile bed. This experimental facility is the simplest representation of sediment transport on the laboratory scale, with the tremendous advantages that boundary conditions are perfectly controlled and a wealth of information can be obtained using imaging techniques. Flows were filmed from the side by a high-speed camera. Using image processing software made it possible to determine the flow characteristics such as particle trajectories, their state of motion (rest, rolling, or saltating motion), and flow depth. In accordance with earlier investigations, we observed that over short time periods, sediment transport appeared as a very intermittent process. To interpret these results, we revisited Einstein’s theory on sediment and derived the statistical properties (probability distribution and autocorrelation function) of the key variables such as the solid discharge and the number of moving particles. Analyzing the autocorrelation functions and the probability distributions of our measurements revealed the existence of long-range correlations. For instance, whereas theory predicts a Binomial distribution for the number of moving particles, experiments demonstrated that a negative binomial distribution best fit our data, which emphasized the crucial role played by wide fluctuations. These frequent wide fluctuations stemmed particle entrainment and motion being collective phenomena rather than individual processes, contrary to what is assumed in most theoretical models
Granular flow down a rough inclined plane: transition between thin and thick piles
The rheology of granular particles in an inclined plane geometry is studied
using molecular dynamics simulations. The flow--no-flow boundary is determined
for piles of varying heights over a range of inclination angles . Three
angles determine the phase diagram: , the angle of repose, is the
angle at which a flowing system comes to rest; , the maximum angle
of stability, is the inclination required to induce flow in a static system;
and is the maximum angle for which stable, steady state flow is
observed. In the stable flow region , three
flow regimes can be distinguished that depend on how close is to
: i) : Bagnold rheology, characterized by a
mean particle velocity in the direction of flow that scales as
, for a pile of height , ii)
: the slow flow regime, characterized by a linear
velocity profile with depth, and iii) : avalanche flow
characterized by a slow underlying creep motion combined with occasional free
surface events and large energy fluctuations. We also probe the physics of the
initiation and cessation of flow. The results are compared to several recent
experimental studies on chute flows and suggest that differences between
measured velocity profiles in these experiments may simply be a consequence of
how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid
Lattice-Boltzmann Method for Geophysical Plastic Flows
We explore possible applications of the Lattice-Boltzmann Method for the
simulation of geophysical flows. This fluid solver, while successful in other
fields, is still rarely used for geotechnical applications. We show how the
standard method can be modified to represent free-surface realization of
mudflows, debris flows, and in general any plastic flow, through the
implementation of a Bingham constitutive model. The chapter is completed by an
example of a full-scale simulation of a plastic fluid flowing down an inclined
channel and depositing on a flat surface. An application is given, where the
fluid interacts with a vertical obstacle in the channel.Comment: in W. Wu, R.I. Borja (Edts.) Recent advances in modelling landslides
and debris flow, Springer Series in Geomechanics and Geoengineering (2014),
ISBN 978-3-319-11052-3, pp. 131-14
- …