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A longstanding problem in the study of sediment transport in gravel-bed rivers is related to the physical
mechanisms governing bed resistance and particle motion. To study this problem, we investigated the motion
of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep two-
dimensional channel with a mobile bed. This experimental facility is the simplest representation of sediment
transport on the laboratory scale, with the tremendous advantages that boundary conditions are perfectly
controlled and a wealth of information can be obtained using imaging techniques. Flows were filmed from the
side by a high-speed camera. Using image processing software made it possible to determine the flow char-
acteristics such as particle trajectories, their state of motion �rest, rolling, or saltating motion�, and flow depth.
In accordance with earlier investigations, we observed that over short time periods, sediment transport ap-
peared as a very intermittent process. To interpret these results, we revisited Einstein’s theory on sediment and
derived the statistical properties �probability distribution and autocorrelation function� of the key variables such
as the solid discharge and the number of moving particles. Analyzing the autocorrelation functions and the
probability distributions of our measurements revealed the existence of long-range correlations. For instance,
whereas theory predicts a Binomial distribution for the number of moving particles, experiments demonstrated
that a negative binomial distribution best fit our data, which emphasized the crucial role played by wide
fluctuations. These frequent wide fluctuations stemmed particle entrainment and motion being collective phe-
nomena rather than individual processes, contrary to what is assumed in most theoretical models.
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I. INTRODUCTION

The objective of this paper is to describe the statistical
properties of experiments on two-phase flows involving
coarse particles driven by gravity and drag exerted by a wa-
ter turbulent flow. This issue is closely related to the micro-
structural understanding of particle transport in waterways or
industrial pipelines. Despite substantial progress made over
the last two decades in the physical understanding of the
motion of coarse particles in a turbulent stream, the ability to
compute bulk quantities such as the sediment flux in rivers
remains poor. For instance, the sediment flow rates measured
in gravel-bed rivers differ within one to two orders of mag-
nitude from the bed-load transport equations �1–3�, even
though these equations have been established from flume
experiments using regression techniques and are believed to
provide a proper evaluation of sediment transport in a well-
controlled laboratory environment. Surprisingly enough,
simple power-law models relating the sediment flow rate to
the water flow depth can perform better than more sophisti-
cated physically based models �3�.

At first glance, this situation may be seen as paradoxical
since experiments usually reveal a simple behavior, e.g., a
linear or pseudolinear dependence of the solid discharge on
the water discharge. Figure 1 shows the typical linear trends

that we observed with our experimental setup. Similar trends
were also obtained with alternative experiments in long
flumes and field data �4,5�. This apparent simplicity, how-
ever, challenges our capacity of providing simple analytical
explanations.

Impediments to a full analytical approach to two-phase
flows are many: complex interplay between the particles and

FIG. 1. Solid discharge �volume flow rate qw or flux of beads ṅ�
as a function of the water discharge for different channel slopes � in
our flume.
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the carrying fluid, particle exchanges between the bed and
the flow, turbulence effects �bed friction, advection of turbu-
lent structures�, etc. That is why most models are based on
substantial approximations of the interplay between the solid
and fluid phases. In the field of bed-load transport, the mean-
field approximation primarily proposed by Bagnold �6,7� is a
pervasive assumption. According to this hypothesis, the fluid
shear stress at the bed �0 equals the threshold value �c cor-
responding to incipient motion of particles; the difference
between the total bottom shear stress � and �0 provides the
shear stress in the solid phase. Interpreting the latter stress as
the result of momentum transfers between the solid and fluid
phases makes it possible to theoretically compute the number
of particles that can be entrained and maintained in motion,
and thereby the solid flow rate �or solid discharge� �8�. This
type of approximation leads to a solid discharge qs in the
form qs� ��−�c�3/2. When compared with laboratory experi-
mental data or field measurements, this scaling correctly de-
scribes the sediment transport for steady uniform or gently
varying flows at sufficiently high solid discharges �9�. There
are, however, a number of clues that indicate that Bagnold’s
formulation may be flawed or crude. First, for this scaling to
match experimental observations, the bulk particle friction
coefficient introduced by Bagnold must be fit to unphysical
values �10,11�. Second, for flow conditions that depart from
steady uniform flow conditions, Bagnold’s approximation
yields poor results, notably for flows over arbitrarily sloping
beds �12� or at low levels of solid discharge �10,13�. Third, if
bedforms �dune or antidune depending on the value of the
Froude number� are interpreted as resulting from a loss of
linear stability in the coupled fluid-solid system, the Bagnold
assumption fails to capture the necessary physics since the
resulting equations of motion do not show any instability
�14�.

From the physical point of view, Bagnold’s approach
takes its origin in the strong belief that sediment transport
results from an equilibrium in the momentum transfer be-
tween solid and liquid phases. The mean-field treatment ap-
plied by Bagnold conflicts with a noticeable feature of sedi-
ment transport: its intermittent nature at low flow rates. In his
simplified fluid-mechanics treatment, Bagnold averaged the
temporal and spatial variability of near-bed turbulence to de-
rive an averaged momentum transfer between the fluid and
solid phases. However, both laboratory and field measure-
ments reveal that particle movement occurs for a period of
time followed by a period in which no motion occurs
�15–17�. At low flow rates, intermittent motion occurs when
the near-bed downstream velocity is sufficiently high to de-
stabilize stationary particles and set them in motion. This
situation corresponds to instances in which the instantaneous
near-bed velocity outweighs its mean value as a result of
near-bed turbulence and does not correlate well with the
mean flow conditions far from the bed �13,18�.

In contrast to Bagnold, Einstein realized how important it
is to account for the episodic nature of particle transport in
computing the solid discharge �19�. In Einstein’s view, sedi-
ment transport does not result from an equilibrium in the
momentum transfers between solid and liquid phases, but
rather from the difference between the entrainment and depo-
sition rates, E and D, respectively, which are a function of

the flow conditions and bed geometry. Stated more explicitly,
this amounts to writing that on a small interval �x, the solid
discharge variation is �qs= �E−D��x. The solid discharge at
bed equilibrium is the implicit solution to the equation E
=D. Einstein’s stochastic approach raises a number of issues
that have received few responses to date. For instance, since
particles move sporadically and in different groups, the solid
flow rate is made up of a series of pulses and is highly
fluctuating, which makes it difficult to define and measure it
properly, even under steady flow conditions �20�. Both field
and laboratory experiments have revealed that instances in
which the instantaneous solid discharge is four times higher
than its mean value are frequent �21–23�. Translated statisti-
cally, this observation means that the probability density
functions of the transport-rate records have a thick tail and
depart from the expected Gaussian behavior. This departure
can be seen as the hallmark of collective motions �24�; if so,
this also implies that any mean-field approximation runs into
difficulty since cooperation between particles is not ac-
counted for.

This paper aims to gain insight into the statistical proper-
ties of idealized sediment-transport experiments. Fundamen-
tally, we note that every bed-load transport model must use
ad hoc parameters adjusted on experimental data. This re-
course to fitting is widespread and likely unavoidable given
the complexity of the physical processes involved. However,
this practice makes it difficult to test the reliability and per-
formance of a physically based model and, in a sense, blurs
the physical picture drawn from experiments by enforcing
agreement. Testing model efficiency must then be carried out
using alternative tools. Here our claim is that analyzing the
statistical properties of measured and predicted variables of-
fers a more robust and stringent framework than the usual
comparison between predicted and measured quantities.

Our idea was to run experiments in an inclined, two-
dimensional flume with a continuous particle supply and
steady flow rate. This two-dimensional flume is assumed to
be the simplest representation of sediment transport on the
laboratory scale and presents overwhelming advantages: the
boundary conditions can be controlled and most of the flow
variables can be measured using image processing. Since a
quantitative comparison between theory and experiment is
biased by any parameter fitting, we tested theory by analyz-
ing the probability distributions and correlations of the sig-
nals measured. Here we have considered Einstein’s theory as
the prototype of theories prone to probabilistic interpretation.
In Sec. II, we will reformulate the original formulation given
by Einstein �19� to make the physical arguments more appar-
ent. In Sec. III, we will present the experimental facilities
and procedures. Finally, in Sec. IV, we will interpret our
results from the probabilistic point of view. A short video
clip showing a typical experiment is available as an EPAPS
document �25�.

II. EINSTEIN’S THEORY REVISITED

Using ad hoc arguments, Einstein derived a bed-load
equation, which has been considered as the cornerstone of
probabilistic theories of bed-load transport �see Ref. �19�, pp.
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29–38�. Taking inspiration from the work done by Lisle et al.
�26� and Papanicolaou et al. �27�, we assume that sediment
transport at low flow rates can be described using a birth-
death process. Essentially we are trying to generalize Ein-
stein’s theory and to cast it in more physical terms and derive
the statistical properties of the key variables. After specifying
notations �Sec. II A�, we will present a generalized Einstein-
type model �Sec. II B�. The Appendix outlines Einstein’s
original method for computing the sediment-transport rate.

A. Objective and notations

We consider a two-dimensional, steady water stream
flowing down a bed, the mean slope of which is denoted by
�. The bed is made up of mobile, spherical particles of equal
radius a and density �p. The water flow rate qw is prescribed
at the channel entrance. In the meantime, the flume is sup-
plied with particles identical to those making up the bed in
such a way that there is bed-load equilibrium, i.e., on aver-
age over long time intervals, there is neither erosion nor
deposition along the bed. Figure 2 provides a sketch of the
flow configuration.

A few solid particles are entrained by the water stream:
the particles can roll/slide along the bed or they can leap and
stay in saltation in the water stream for short periods of time.
We refer to the former motion as the rolling regime and to
the latter as the saltating regime. Since we are especially
interested in weakly intense bed-load transport, emphasis is
given to flows with a fairly low fluid velocity. In this case,
the trajectory of one particle exhibits a succession of rests
and moves in a rolling or saltating regime, which may make
it difficult to accurately discriminate the motion regime. For
the sake of simplicity, we will assume here that there is only
one species of moving particles, which is referred to as the
moving �i.e., saltating and rolling� particles M.

In a typical bed-load transport problem, knowing the con-
trol parameters of this flow configuration �qw ,� ,a ,�p�, we
wish to determine the flow properties: flow depth h, solid
discharge qs �number of particles per unit time conveyed by
the flow, measured in m3/s�, and mean flow ūf. For this
purpose, we consider a control volume V, within which we
follow up the particles and the fluid motion; we pose V=S
�L, where the length is denoted by L, the volume by V, the

cross section by S=hW, where W represents the flume width.
Here, instead of focusing on the relationships between the
mean values, we seek the statistical properties of the key
quantities such as the solid discharge.

B. Birth-death process as a generalization of Einstein’s model

The solid discharge can be defined as the flux of particles
through a flow cross section S: qs=�Sup ·kdS, where k is the
unit normal to S. This definition, suitable for continuum
fields, is not well suited to discrete elements. A more conve-
nient definition is to introduce the flow rate in terms of the
probability P�up �x , t� that a particle crosses the control sur-
face S at position x and time t with velocity up,

qs = �
S
�

R2
P�up�x,t�up · k�dx�dup. �1�

Under steady conditions ��P /�t=0�, this definition can be
worked out as

qs = lim
V→�

1

V�
i=1

N

uivpS = lim
L→�

vp

L �
i=1

N

ui, �2�

in which the ensemble average has been replaced by a vol-
ume average and vp is the particle volume. The integration
has been made on the control volume V. We have also used
ui=up ·k the streamwise velocity component of particle i and
n the number of particles in motion in the control volume.
Therefore, in the following, we shall define the flow rate ṅ
=qs /vp as

ṅ =
1

L
�
i=1

n

ui. �3�

In order to compute the discharge equation, we need to es-
tablish �i� the number n of particles in motion and �ii� their
velocities depending on the control parameters �qw ,� ,a ,�p�.

In order to compute the number of particles in motion, we
can draw an analogy with chemical reactions. If the particles
resting on the bed surface are denoted by B, the moving
particles by M, we can represent the exchanges between the
two phases in the following way:

B � M .

From these equations, we can establish a kinetic equation,
which tells us the rate at which exchanges occur between the
species B and M. The time variation in the number of mov-
ing particles is

dn

dt
=

nb→m

tb
−

nm→b

tm
, �4�

where nb→m is the number of particles dislodged from the
bed and nm→b is the number of moving particles that are left
to rest within the observation window. These population ex-
changes are associated with the characteristic times tb and tm,
which are in turn related to the mean times during which a
single particle stays at rest or moves, respectively, 	 and �
�see Fig. 3�a��. We can also use Eq. �4� to define the entrain-

FIG. 2. Sketch defining the flow configuration.
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ment rate �first term on the right-hand side� and the deposi-
tion rate �second on the right-hand side�.

Transitions between the moving and/or resting states oc-
cur randomly. Following Lisle et al. �26� and Papanicolaou
et al. �27�, we assume that the particle motion is influenced
only by its present state and has a fade memory of its previ-
ous states. In other words, the state transitions are governed
by a continuous-time Markov process of order 1, with two
discrete states �moving and/or resting�. If we further assume
that there is time and space invariance in the erosion and/or
deposition process, the Markov transitions occur with con-
stant probability per unit time. For any small time increment
�t, we have

Prob�moving at time t + �t�resting at time t� = 	−1�t + o��t� ,

Prob�resting at time t + �t�moving at time t� = �−1�t + o��t� ,

where the characteristic times 	 and � are constant. This
two-state Markov process is known as a telegrapher’s pro-
cess �see Ref. �28��. With these assumptions, it can be shown
that the resting and moving times are exponentially distrib-
uted with means 	 and �, respectively. If Tb,i and Tm,i repre-
sent the durations of the ith periods of rest and motion since
observation has started, then Prob�Tm�=�−1 exp�Tm /�� and
Prob�Tb�=	−1 exp�Tb /	�; said differently, the waiting
time 
tb→r between two entrainments is exponentially dis-
tributed with a mean time equal to 	, Prob�
tb→r�= �	
+��−1 exp�
tb→r / �	+��� �see Fig. 3�. Using the correspon-
dence between the Poisson and exponential distributions, we
also deduce that the number of events �deposition and/or
entrainment� that occur per unit time is distributed according
to a Poisson distribution: the probability that we observe k
entrainments of the same particle within the time interval �t
�of any duration� is given by Prob�k ;�t�=�k exp−� /k!, with

�=�t /	. The autocorrelation function of a random variable X
being defined as

��s� =
	�X�t + s� − X̄��X�t� − X̄�


	�X�t� − X̄�2

,

where 	·
 denotes time averaging and X̄ the mean value, we
find that the autocorrelation function for the telegrapher’s
process is ��s�=exp�−�1/�+1/	�s� �28�.

This description is a simplified probabilistic Lagrangian
description of a single particle’s motion. We generalize it to
obtain a Eulerian viewpoint, where we describe the motion
of n particles within an observation window. Within our ob-
servation window of length L=2�aa �� being a free pa-
rameter that can take any value�, we assume that on average,
the particle flux is steady, which means that the particles that
leave the window are replaced by other particles coming
from upstream. Within this window, there are approximately
N=� particles lying over the bed surface, either at rest or in
motion. The number n of particles in motion is then the sum
of N variables independently distributed and governed by a
telegraph process �see Fig. 3�b��. Figure 3�c� shows a typical
variation in the number of moving particles; in that case, the
number of moving particles is a step-shaped function inher-
iting the statistical properties of the individual processes.

Indeed, since each particle is governed by a telegraph
process, the probability of observing it in motion is �=� / ��
+	�, i.e., it follows a Bernoulli distribution. Now, summing
N particles following a Bernoulli distribution leads to a bi-
nomial distribution with mean n̄=�N and variance ��1−��N.
We then conclude that with our assumptions, the number n of
moving particles is distributed according to a binomial dis-
tribution, which means that if � stays constant independently
of the number of particles N when L→�, then the probabil-

FIG. 3. �a� Succession of rest-
ing and moving phases for a
single particle. �b� Superimposi-
tion of N telegrapher’s processes.
�c� The number of moving par-
ticles is computed as the sum of
the state variables; the waiting
time for a single particle is defined
as the time period elapsed be-
tween two events of the same
type. Simulations made with N
=3 particles, �=5 s, and 	=10 s.
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ity distribution of n tends toward a Gaussian distribution. If
we further assume that whenever a particle is set in motion,
it reaches a fairly constant velocity up �29�, then using Eq.
�3� leads to concluding that the probability distribution of the
solid discharge is the binomial distribution Bi, with mean
�Nup and variance ��1−��Nup

2,

Prob�ṅ� = Bi��Nup,��1 − ��Nup
2� .

In the large N limit, this distribution tends to be Gaussian.
Since the sum of Poisson-distributed variables also has a
Poisson distribution, we infer that the number of deposition
and/or entrainment events per unit time has a Poisson distri-
bution: the probability that we observe k entrainments within
the time interval �t is given by

Prob�k;�t� =
�k

k!
exp−�, �5�

with �=N�t /	. Instead of the Poisson distribution for char-
acterizing the number of events per unit time, we can equiva-
lently use the exponential distribution for specifying the lag
times between two events; the mean waiting times between
two entrainments within the observation window is �	
+�� /N. The autocorrelation function of N parallel telegra-
pher’s processes is

��s� = exp�− s/�*� , �6�

with �*=	� / ��+	� /N. It is worth noting that, with our as-
sumptions, the solid discharge and the number of moving
particles have the same autocorrelation function.

According to Einstein �19�, the probability of entrainment
is the fraction of time �=� / ��+	� that a particle is in a
moving state. It also represents, on average, the relative
number of particles �i.e., p� that have moved within the ob-
servation window for a given time interval �27�. Moreover,
in Einstein-type theories, particle entrainment results from a
loss of stability: when the instantaneous lift and/or drag force
exceeds the resisting forces, the particle is dislodged from
the bed and starts to roll. By relating the fluid forces to the
instantaneous fluid velocity uf, we can deduce the fluid
threshold uc corresponding to incipient motion �e.g., see
Refs. �27,30��. The probability p is then defined as p=�
=Prob�uf �uc�. Over the time interval tb, the number of par-
ticles that are entrained is then nb→m=Np, while the number
of particles that come to a halt is nm→b=n�1− p� over the
period tm. In steady flow conditions, Eqs. �4� and �3� lead to

qs =
p

1 − p

tm

tb

N

L
up =

p

1 − p

tm

tb

up

2a
, �7�

which is formally similar to Eq. �A1� derived by Einstein,
except that the solid discharge is now explicitly dependent
on the particle velocity.

Our goal is not to derive a complete discharge equation
and so we do not go further by specifying the relation of p to
the mean flow conditions, as Einstein �19� or subsequent
authors did. Here we focus on the main elements of his
theory, i.e., the general expressions of the deposition and
entrainment rates, the solid discharge, and the number of
particles in motion. We have not only inferred the mean val-

ues of these variables, but also their expected statistical dis-
tributions.

III. EXPERIMENTAL FACILITIES AND TECHNIQUES

A. Overview

In order to test the influence of fluid velocity on bed-load
transport, we ran six experiments with different flow rates in
a two-dimensional channel �see Sec. III B�. The features of
each run are summarized in Table I. The hydraulic conditions
are specified using classic dimensionless numbers. The flow
Reynolds number is defined as Re=4Rhūf /�, where Rh
=Wh / �2h+W� denotes hydraulic radius, ūf =qw / �Wh� fluid
velocity �averaged in the y and z directions�, � kinematic
viscosity of water, and h the time-averaged water depth. The
Froude number Fr= ūf /�gh varied significantly over the du-
ration of the experiment and along the main stream direction.
The mean Fr values are reported in Table I. The Shields
number is defined as NSh=� fūf

2 / ���p−� f�gh� and reflects the
ratio of the water driving force to the friction resistance force
on the bed �23�. The solid concentration is defined as the
ratio of the solid and water discharges Cs=qs /qw. Values
reported in Table I are low, which indicates that particle flow
was dilute. The h /d ratio is low, typically in the range 1.7–
3.2.

B. Channel

Experiments were carried out in a tilted, narrow, glass-
sided channel, 2 m in length and 20 cm in height. Figure 4
shows a sketch of the experimental facility. The channel
width W was adjusted to 6.5 mm, which was slightly larger
than the particle diameter �6 mm�. In this way, particle mo-
tion was approximately two dimensional and stayed in the
focal plane of the camera �see Sec. III E and Sec. III F�. The
channel slope tan � was 10%.

C. Channel base and mobile bed

The channel base consisted of half-cylinders of equal size
�a=3 mm�, but they were randomly arranged on different
levels, from 0 to 5.5 mm, by increments of 0.5 mm. These
levels were generated using a sequence of uniformly distrib-
uted random numbers. Disorder was essential, as it prevented
slipping of entire layers of particles on the upper bed surface,
which would have induced artificial erosion conditions. The
effects of bed disorder have been addressed in an earlier
paper �23�.

An obstacle was set at the channel outlet to allow bed
formation and prevent full bed erosion. Its height could be
adjusted. Because disorder in the bed-particle arrangement
was dependent on the number of layers, the height of the
obstacle influenced the entrainment rate and thus the solid
discharge �31�. In order to promote disorder, we selected an
obstacle height of three particle diameters.

D. Solid and water supplies

Colored spherical glass beads with a nominal diameter 2a
of 6 mm and a density �p of 2500 kg/m3 �provided by Sig-
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mund Lindner GmbH, Germany� were used. They were in-
jected from a reservoir into the channel using a wheel driven
by a direct current motor and equipped with 20 hollows on
the circumference, as depicted in Fig. 4. For the experiments
presented here, the injection rate ṅ0 ranged from
5 to 20 beads per second, with an uncertainty of less than
5%. This corresponded to a solid discharge per unit width
qs /W of 9–38�10−5 m2/s. The water supply at the channel
entrance was controlled by an electromagnetic flow meter
provided by Krohne �France�. The discharge per unit width
qw /W ranged from 4 to 10�10−3 m2/s.

The hydraulic conditions �velocity profile, bed friction,
etc.� have been specified in earlier papers �23,32�. Although

the flume was narrow, its hydraulic characteristics were simi-
lar to those observed in wide channels provided that the
flows were shallow. Moreover, making the solid discharge
equation dimensionless and comparing it with other labora-
tory data showed that the features of sediment transport in
our flume were quite comparable with those observed with
other flumes, although we used spherical particles as well as
a narrow and steep channel �33�.

E. Experimental procedures

The experimental procedure can be split into three major
steps. First of all, a particle bed was built along the channel
base, which remained stationary on average. To that end, an
equilibrium between the water discharge, solid discharge,
bed elevation, and channel slope was sought. This equilib-
rium was reached using the following procedure:

�1� The water discharge qw was set to a constant value.
�2� An obstacle �approximately 20 mm in height� was po-

sitioned at the downstream end of the channel. The solid
discharge ṅ0 at the channel entrance �or the injection rate�
was set to a constant value. The solid discharge qs was cal-
culated by the relation qs=�d3ṅ0 /6. The first beads supplied
by the feeding system were stopped by the obstacle at the
channel outlet and started to form a bed. The bed line rose to
the level of the obstacle and beads began to leave the chan-
nel. After approximately 10 minutes, the system arrived at

TABLE I. Flow characteristics and time-averaged values of dimensionless numbers characterizing bed
load and water flow. The slope is kept constant: tan �=10%, while the solid discharge at the inlet ṅ0 is
altered. The notation E10-6 means tan �=10% and ṅ0�6 beads/s. The measured solid discharge within the
observation window is denoted by ṅ. Re, Fr, and NSh are the Reynolds, Froude, and Shields dimensionless
numbers. The time-averaged particle velocity in the rolling �saltating, respectively� regime is denoted by ūr

�ūs, respectively�, while nr �ns, respectively� represents the mean number of rolling �saltating, respectively�
particles; the variance �Var� of nr and ns is provided. We have also reported the autocorrelation time te of the
rolling-particle number nr�t�.

Experiment E10-6 E10-7 E10-8 E10-9 E10-16 E10-21

tan � �%� 10.0 10.0 10.0 10.0 10.0 10.0

ṅ0 �beads/s� 5.3 6.7 8.0 10.0 15.4 20.0

qw /W �10−3 m2/s� 4.15 4.42 5.38 5.54 8.19 10.31

h �mm� 10.2 10.6 12.2 12.3 16.6 19.1

ūf �m/s� 0.41 0.42 0.44 0.45 0.49 0.54

ṅ �beads/s� 5.72 6.85 7.74 9.41 15.56 20.57

Re 4020 4090 4550 4570 5280 5910

Fr 1.29 1.29 1.28 1.30 1.22 1.25

NSh 0.113 0.120 0.135 0.139 0.188 0.216

Cs �%� 2.40 2.69 2.50 2.96 3.30 3.47

ūr �m/s� 0.063 0.074 0.065 0.075 0.075 0.072

ūs �m/s� 0.28 0.29 0.29 0.29 0.32 0.32

nr 7.29 6.92 10.37 9.94 16.65 26.69

Var�nr� 59.13 32.72 55.82 42.61 69.37 119.06

ns 2.17 2.93 3.39 3.74 6.19 7.52

Var�ns� 2.40 2.87 3.14 3.30 4.88 5.44

te �s� 0.34 0.36 0.23 0.22 0.20 0.18

FIG. 4. Sketch of the experimental setup.
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bed-load equilibrium, i.e., there was no more bed deposition
or erosion over a sufficiently long time interval.

�3� In order to make the bed line parallel with the channel
base, the water discharge was then adjusted. After several
iterations, we arrived at the configuration of a bed that con-
sisted of two to three almost stationary bead layers along the
channel, for which the bed line slope matched the channel
base inclination. Average equilibrium conditions were
sustained over long time periods, typically as long as
30 minutes.

Once bed equilibrium was reached, the particles and the
water stream were filmed using a Pulnix partial scan video
camera �progressive scan TM-6705AN�. The camera was
placed perpendicular to the glass panes at 115 cm away from
the channel, approximately 80 cm upstream from the channel
outlet. It was inclined at the same angle as the channel.
Lights were positioned in the backside of the channel. An
area of L=22.5 cm in length and 8 cm in height was filmed
and later reduced to accelerate image processing. Refer to the
EPAPS document �25� to obtain a short video of run E10-8.

The camera resolution was 640�192 pixels for a frame
rate of f =129.2 fps �exposure time: 0.2 ms, 256 gray levels�.
Each sequence was limited to 8000 images due to limited
computer memory; this corresponded to an observation du-
ration of approximately 1 minute.

Each experiment was repeated at least twice in order to
spot possible experimental problems and to get an idea of the
data scattering.

F. Image processing

Images were analyzed using the WIMA software, pro-
vided by the Traitement du Signal et Instrumentation labora-
tory in Saint-Etienne �France�. Positions of the bead mass
centers were detected by means of an algorithm combining
several image-processing operations. It compared the filmed
images with the image of a model bead and calculated the
correlation maxima to obtain the bead positions. The water
free surface �averaged in the direction perpendicular to the
channel walls� was detected using its slim form; missing
portions were interpolated or extrapolated. Since the experi-
ments involved a mobile bed, the water depth was defined as
the difference between the free surface and the bed surface
elevation. Arbitrarily, we considered that the bed surface pro-
file is the broken line linking the top points of the uppermost
resting or rolling beads. Figure 5 depicts such a broken line
at a given time. Determining the particle states is trickier
�23�. Conflicts in the algorithmic state determination arose
because distinguishing between incipient motion and small
drift �particle oscillations, slight displacement induced by
collisions, etc.� was difficult. In our statistical analysis, we
considered a fourth population of particles �undeterminate
state� that we do not describe here; this detail must, however,
be kept in mind when looking at Table I since a small devia-
tion between the computed solid discharge, on the one hand,
and the number of moving particles and their velocities, on
the other hand, can be observed. For more details, the reader
can refer to Refs. �34,35�.

IV. EXPERIMENTAL RESULTS

As we shall see below �Sec. IV A�, the generalized Ein-
stein theory predicts a number of features such as the nearly

Gaussian distribution of the solid discharge, the Poissonian
character of the occurrence of entrainment and/or deposition
over time, and the exponential decrease in the autocorrela-
tion function of the number of particles moving within the
observation window. There are also a number of features that
conflict with the fundamental assumptions underpinning this
theory. In Sec. IV B, we will see that the probability distri-
butions of the key variables have much thicker tails than
expected. This will be interpreted as the hallmark of coop-
eration processes between particles when they are entrained
or when they move.

A. Solid-discharge time series

Figure 6 shows the time variations in the solid discharge
ṅ, the number of particles nr in a rolling regime, the number
of particles in a saltating regime ns, the number of particles
that passed from a resting state to a rolling state �r→b� and
conversely �b→r�, and the number of particles that experi-
enced rolling and/or saltating transitions �r↔s�. This dia-
gram represents the results obtained for a mean bed slope of
0.1 and a solid discharge at the flume inlet ṅ0=8 beads/s
�experiment 10-8 in Table I�; these plots are typical of the
results that we obtained for other solid discharges ṅ0.

Note that in these state transitions �see Figs. 6�d� and
6�e��, more than one particle can be involved; because of the
limitation of the acquisition rate of our high-speed camera
�130 images per second�, we could not resolve two events
that occurred over very short time intervals. This limitation
may pose problems when interpreting the Markovian prop-
erties of our time series �see below in this section�.

A striking point in Fig. 6 is the wide fluctuations that all
the time series exhibit. Typically, the solid flow rate ranged
from 0 to 22 beads/s, while the mean flow rate imposed at
the inlet was ṅ0=8 beads/s. For the rolling regime, the fluc-
tuation range was 0–40 beads within the observation win-
dow, whereas the mean number was n̄r=9.7 beads.

FIG. 5. Sketch defining the state of motion and the bed line.
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The origins of these fluctuations have been partly dis-
cussed in an earlier paper �23�. In that paper, we tried to
understand the origins of the fluctuations by altering particle
arrangement within the bed. It was shown that the solid-
discharge fluctuations resulted, to a large extent, from the
finite size of the observation window. Since the solid dis-
charge was computed using Eq. �3�, it was directly related to
particle velocities and thus inherited their stochastic variabil-
ity. It was also observed that these fluctuations were strong
compared to experiments run with a stationary bed �i.e.,
deposition and entrainment of particles were not possible�.
Here we are attempting to gain insight into the role played by
fluctuations in the sediment-transport processes by keeping
the same particle arrangement within the bed, but varying the
water flow rate while maintaining bed equilibrium �neither
net erosion nor deposition over long time scales�.

As shown in Fig. 7�a�, the empirical probability distribu-
tion of solid discharge is closely approximated by a Gaussian
distribution, although, in places, there are spikes departing
from the Gaussian trend. These spikes reflect the existence of
a finite number of particles within the observation window
�23�. This Gaussian behavior is expected since the solid dis-
charge is defined as the product of the number of moving
particles and of their velocities �see Eq. �3��. Indeed, if the
particle velocities are sufficiently agitated �resulting in a ran-
dom velocity distribution� and the number of moving par-
ticles within the observation window varies significantly
with time, the law of large numbers supports this expecta-
tion.

As expected, the autocorrelation functions � of the mea-
sured signals ṅ�t�, nr�t�, and ns�t� are similar. As shown by
Fig. 7�b�, the typical behavior is the same: �i� we observe a

FIG. 6. Experiment 10-8:
mean solid discharge at the chan-
nel inlet ṅ0=8 beads/s; mean bed
slope tan �=0.1. �a� Solid dis-
charge ṅ as a function of time. �b�
Variation in the number of rolling
particles nr. �c� Variation in the
number of saltating particles ns.
�d� Exchanges between the bed
and the rolling phases: each bar
oriented upward indicates the
number of beads that passed from
the resting state to the rolling re-
gime over a given time interval

�1/130 s; downward-oriented
bars represent the number of roll-
ing particles coming to a halt. �e�
Exchanges between the rolling
and saltating regimes.
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fairly slow exponential decrease, i.e., for short times, we
have ��s��exp�−t / te� with te a typical time scale; �ii� the
typical time scales te related to each signal are very close.
For experiment E10-8, we found te�230 ms. The autocorre-
lation times for other experiments are reported in Table I.

In our earlier paper �23�, the time scale te was interpreted
as the typical travel time of the moving particles through the
observation window. While this interpretation seems reason-
able for the solid discharge, there is at first glance no clear
reason why this should be so for the number of rolling and/or
saltating particles. One could call on the following explana-
tion for the similarity in the autocorrelation functions: once a
particle experiences a transition into another regime, it
moves at approximately the same velocity as the mean phase
velocity and hence one expects that the autocorrelation time
nr�t� and ns�t� is somehow related to a travel time. However,
since their mean phase velocity was quite different �see Table
I�, their autocorrelation times should also be different.

In Sec. II B, we have also shown that for particle entrain-
ment, the waiting-time distribution should follow an expo-
nential distribution of rate r=N / �	+��. A particular problem
encountered here in evaluating the parameter r is that we
could not resolve successive events when they occurred
within a very short time interval �less than the acquisition

rate of our camera, i.e., for lag times shorter than 2/130
=0.015 s�; this means that we should censor the lag-time
sample to remove the lowest values if we want to properly
evaluate the sample distribution. This also implies that we
cannot demonstrate the Markovian character of the measured
random variables and this explains why in Fig. 6�e�, we can
occasionally observe several events occurring at the same
time �in contradiction with a Markovian theory�.

Within the Eulerian framework adopted in Sec. II B, we
referred to an event as any instance where the number of
moving particles is changed within the observation window.
Figure 3 shows how the step-shaped character is inherited
from the individual changes of state. Experimentally, we
counted the number of particles that were entrained within
the time interval �1/130=7 ms� during which one image was
captured by the camera; we did the same for the number of
particles that were deposited or experienced a transition to a
saltating regime. In doing so, we obtained a time sequence of
events, as shown in Figs. 6�d� and 6�e�. In this context, the
lag time is just the amount of time separating two events of
the same type. This lag time is a random variable. Figure
8�a� shows the empirical probability distribution function of
the lag times 
t for the different classes of events �entrain-
ment or deposition, transition to a rolling or a saltating re-
gime�. We have superimposed the exponential distribution,
the coefficient of which has been adjusted using the method
of moments on the whole sample. As expected, the exponen-

FIG. 7. �a� Probability distribution function �pdf� of the solid
discharge for experiment E10-8 �ṅ0=8 beads/s; mean bed slope
tan �=0.1�: the dots represent the empirical pdf, whereas the solid
line is a Gaussian distribution adjusted on the data �mean, 7.93;
standard deviation, 3.49�. �b� Autocorrelation function for experi-
ment E10-8: the thick dotted line corresponds to the solid discharge
ṅ, the thin solid line to the number of rolling particles nr, and the
dashed line to the number of saltating particles ns.

FIG. 8. �a� Probability distribution of the time lag 
t between
two events �change in state�: the filled disks represent the state
transition b→r �entrainment, �b→r�, while the empty disks repre-
sent the state transition r→b �deposition, �r→b�; the solid line pro-
vides the exponential probability distribution adjusted on the data
b↔r �using the method of moments�. The filled boxes represent the
state transition r→s, while the empty boxes represent the converse
transition s→r; the dashed line is the exponential probability dis-
tribution adjusted on the data r↔s. �b� Variation in the lag times

tb→r �filled disks�, 
tr→b �empty disks�, 
tr→s �filled boxes�, and

ts→r �empty boxes�.

STATISTICAL DESCRIPTION OF SEDIMENT¼ PHYSICAL REVIEW E 74, 011302 �2006�

011302-9



tial distribution is a fairly good representation of the lag-time
distribution whatever the type of exchange except at low
values of 
t, for which the empirical distribution departs
significantly from the exponential trend. Adjustment
provides the following characteristic times for each
transition type for experiment E10-8: 
tb→r=33.9 ms,

tr→b=31.7 ms, 
tr→s=57.4 ms, and 
ts→r=61.3 ms. For
all experiments, the mean lag times are reported as a function
of the mean fluid velocity in Fig. 8�b�.

Up to this point, the generalized Einstein theory is quali-
tatively consistent with our laboratory experiments. A dis-
crepancy is, however, noticeable. In Sec. II B, we found that
the autocorrelation time te was �*=	� / ��+	� /N and the
waiting time was 
tb→r=r−1= �	+�� /N. From these rela-
tions, we deduce that the ratio

�*


tb→r
=

�/	

��/	 + 1�2 � 1

is in contradiction with our experimental results, since for
instance for E10-8, we have �* /
tb→r=6.9. The autocorrela-
tion time is much longer than expected. As we shall see in
the next section, this result is not fortuitous and illustrates the
existence of long-range correlations in the physical processes
governing sediment transport.

B. Probability distribution of the number of moving particles

Analyzing the probability distribution of the number of
moving particles is richer than examining that of the solid

discharge because the latter combines two sources of fluctua-
tions: the number of particles and their velocities, which
makes it difficult to properly interpret them. Here, we will
focus on the probability distributions of the number of roll-
ing particles nr �see Fig. 9� and moving particles nm �see Fig.
10�; “moving particles” refer to all particles in motion �in a
rolling or a saltating regime�. However, given the similarities
between the two categories of particles, we will only com-
ment on the former group.

Figure 9 shows how the probability distribution of nr
changes when the fluid velocity is increased. At low fluid
velocities, the probability distribution is close to a straight
line in a log-linear diagram, revealing an exponential behav-
ior. At higher fluid velocities, the probability distribution
takes the shape of an asymmetric bell, with its maximum
moving from left to right. At first sight, the prominent im-
pression is that increasing the solid discharge leads to mak-
ing the probability distribution of nr more Gaussian.

In the generalized Einstein theory presented in Sec. II B,
we inferred that the number of moving particles should be
distributed according to a binomial law, with mean n̄=�N
and variance ��1−��N where N is the density number of
particles lying on the bed and �=� / �	+�� is the mean rela-
tive time during which a particle is maintained in motion by
the stream. A particularity of the binomial law is that its
variance must be lower than its mean. For all our experi-
ments, we found that the sample variance exceeded the
sample mean. For instance, for experiment E10-8 �see Fig.
9�c��, the mean number of particles is n̄r=10.4, whereas the

FIG. 9. �Color online� Prob-
ability distributions of the number
of rolling particles. The dots rep-
resent the empirical probability
mass functions. The dotted lines
represent the negative binomial
distribution, while the dashed
lines represent the gamma distri-
bution. �a� Experiment E10-6, �b�
experiment E10-7, �c� experiment
E10-8, �d� experiment E10-9, �e�
experiment E10-16, �f� experi-
ment E10-21.
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variance is Var�nr�=55.8. For all probability distributions,
the distribution tail is much thicker than expected.

Since thick tails are often associated with collective phe-
nomena �24�, it is worthwhile characterizing these distribu-
tions more accurately. We found that the negative binomial
distribution provides a fairly proper representation of the em-
pirical distribution, as shown in Fig. 9. Small departures are
observed in the distribution tail �insufficient number of data�
and when nr→0. Note that it was not always very easy to
distinguish between incipient motion and oscillations of bed
particles �see Sec. III F� and consequently our image-
processing algorithm failed at times to count the exact num-
ber of moving particles. The small deviations between the
theoretical and empirical probability distributions may result
from this uncertainty on nr. Except for the behavior close to
the boundaries, the whole trend is well represented by the
negative binomial distribution. Instead of a discrete distribu-
tion, we can use a continuous probability distribution to ap-
proximate the empirical distribution of nr. A natural candi-
date is the gamma distribution, which can be fairly well
adjusted on data, as shown in Fig. 9.

This observation is of fundamental importance since it
conflicts with the assumptions underlying the birth-and-death
process used in the theoretical derivation �see Sec. II B�. In-
deed, if the particles are independent and identical, then one
obtains a binomial distribution whatever the model taken for
rest and/or move, provided that the flow is steady and there
is bed equilibrium. The only way to obtain a nonbinomial
behavior would be to have �i� unsteady flow conditions or
�ii� nonidentical or dependent particles.

Concerning point �i�, it should be remembered that the
negative binomial distribution Neg�k �r , p� can be seen as a
Poisson distribution Po�k ���, the rate coefficient ��� of
which is not constant, but randomly distributed according to
a gamma distribution ��·�r , p−1−1�

Neg�k�r,p� = �
0

�

Po�k�������r,p−1 − 1�d� .

This boils down to assuming that the bead supply is not
constant, but randomly distributed. This is in contradiction
with the boundary conditions that we imposed at the channel
inlet.

Point �ii�—nonindependence particles—is physically
more convincing. In our experimental observations, we ob-
served that particles preferably moved in groups and over a
very short time interval; many particles can be entrained be-
cause the dislodgement of one particle entailed the loss of
stability of several neighboring particles. These observations
may be made clearer by examining the spatiotemporal bead
propagation �i.e., by reporting the particle movement in the
�x , t�-plane�. Figure 11 shows the bead propagation, includ-
ing a sketch of how the diagram was obtained. Only beads in
saltation �black lines� and rolling �gray lines� are presented;
beads at rest have been omitted for the sake of clarity. Beads
entered the observation window on the left and exited on the
right. The time propagation is downward. Since the x com-
ponent of the velocity of a bead is the ratio between the x
displacement and the elapsed time, it is equivalent to the

FIG. 10. �Color online� Prob-
ability distributions of the number
of moving particles. The dots rep-
resent the empirical probability
mass functions. The dotted lines
represent the negative binomial
distribution, while the dashed
lines represent the gamma distri-
bution. �a� Experiment E10-6, �b�
experiment E10-7, �c� experiment
E10-8, �d� experiment E10-9, �e�
experiment E10-16, �f� experi-
ment E10-21.
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slope of the curve. Given that beads usually moved faster in
the saltating regime than in the rolling regime, the 
x /
t
quotient was larger, as shown in the diagram. Note as well
that the beads in saltation typically travelled distances as
long as the window length before coming to rest, whereas
beads in the rolling regime often moved only a few bead
diameters before stopping again.

Furthermore, different events �at a certain x position and a
certain time; see Fig. 11� could be observed, for example,

�i� a series of four particles was set into rolling move-
ment �see Fig. 11 at x�150 mm, t�0.4 s�.

�ii� A bead in saltation was decelerated suddenly because
of a collision with another bead. It switched into a rolling
regime but returned to saltation a few images later. The bead
that had been hit moved about one diameter then came back
to rest �see Fig. 11 at x�150 mm, t�1.5 s�.

�iii� The diagram shows that there were beads frequently
switching between rest and rolling; others were switching
between the rolling and the saltating regimes, whereas the
transition from rest to saltation via rolling �or from saltation
to rest� was rare.

�iv� A striking feature is that the liftoff and settling events
often occurred in tight ranges of x. We observed, for ex-
ample, seven liftoffs in the range of 10 mm�x�40 mm in
the time period 0 s� t�3 s and eight settling events in the
range of 140 mm�x�170 mm in the period 1.5 s� t�4 s.

Note that, in the diagram of Fig. 11, we show only 4 s of
the sequence, whose total duration exceeded 60 s. The events
cited were nevertheless typical of the experiment and repro-
duced with modifications over the whole sequence. Statisti-

cal tests were carried out to determine the relations between
cooperative motion �or dislodgement�, the bed configuration
�i.e., how the particles are arranged in the close neighbor-
hood�, and the flow conditions �i.e., triggering mechanisms
such as particle collision�. Analyzing the image sequences
allowed us to formulate different scenarios, but we failed to
find any statistical relevance for these scenarios.

V. CONCLUDING REMARKS

In this paper, idealized experiments of sediment transport
were presented and analyzed in light of Einstein’s theory. In
the 1940s, Einstein developed a heuristical stochastic theory
on sediment transport, based on the recognition that at low
fluid velocities, particle transport is highly intermittent �19�.
Following the interpretation primarily proposed by Lisle et
al. �26�, we revisited Einstein’s original formulation by
stressing the key physical ingredients used in his derivation;
we notably showed that describing entrainment and deposi-
tion as a birth-and-death process made it possible to retrieve
Einstein’s bed-load equation and to predict a number of fea-
tures concerning the probability distributions of the key vari-
ables. This statistical description turns out to be especially
helpful when testing the reliability of Einstein-type theories:
indeed, given the complexity of the physical processes in-
volved, these theories use ad hoc parameters, which must be
adjusted. Because of this fitting, any direct comparison
against data is biased to a large extent. Moreover, this statis-
tical description may reveal a number of important hidden
facets in the physics of sediment transport. For instance, a
key assumption in sediment-transport theories is that at low
fluid velocities, particles act independently, i.e., the state of a
single particle is little or not influenced by other particles.
With this assumption, we showed that the probability distri-
bution of the number of moving particles should be binomial
and tend quickly toward a Gaussian distribution in the large-
number limit.

Our experimental results provided evidence that, although
some statistical properties �such as the autocorrelation func-
tion of the solid discharge� predicted by Einstein’s theory
were consistent with our data, the autocorrelation functions
of the number of moving particles and their mass distribution
functions violated the assumptions underpinning Einstein’s
theory. Typically, the autocorrelation time was much longer
than expected and the mass distribution function had a much
thicker tail than predicted using Einstein’s arguments. For
instance, from the theoretical standpoint, the number of mov-
ing particles within any observation window is a random
number distributed according to a binomial distribution; in
the large-number limit, the theoretical distribution should
tend very quickly toward a Gaussian limit. In contrast, our
experiments showed that the sample variance outweighed the
sample mean and a negative binomial distribution fits the
data better. This means that extreme events �i.e., a large num-
ber of moving particles� are much more frequent than ex-
pected. Furthermore, our experiments showed that the con-
vergence toward the Gaussian limit is slow. At the lowest
solid discharges achievable with our system, the probability
distribution of the particle number is closer to an exponential

FIG. 11. From the image sequence to the bead propagation in
the plane �x , t�. Experiment E10-8. We marked the transition from
rest to rolling �respectively, from rolling to rest� of the liftoff events
�respectively, the settling events� by triangles �respectively,
squares�. See Ref. �23�.
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distribution. When increasing the solid discharge, the vari-
ance and/or mean ratio decreases and the probability distri-
bution becomes increasingly bell shaped.

The discrepancy between theory and experiment revealed
the existence of long-range correlations in particle motions.
Taking a closer look at the resting and moving states showed
that on many occasions, particles moved in well-separated
groups. Collective displacement and entrainment of particles
explained why the particles were to some extent dependent
and thus why the autocorrelation time was much longer than
expected.

One might think that aggregate transport was promoted by
particle sphericity and equal size. Our observations are, how-
ever, well supported by field measurements, which docu-
mented similar processes in gravel-bed rivers �16�. The wide
range of fluctuations exhibited by laboratory or field mea-
surements �1–3� also confirmed the existence of thick-tailed
probability distributions for sediment transport involving ir-
regular particles.

The present study has many important implications. First,
it provides a plausible explanation about the failure of all
mean-field theories on bed-load transport �at low water dis-
charges�, which ignore any cooperation effects between par-
ticles. It thus motivates further research with a clear focus on
collective effects in entrainment and displacement of coarse
particles as a result of fluid action. Second, our investigation
has shown the transition to a non-Gaussian behavior toward
a Gaussian behavior in the moving-grain population; this
transition may explain why mean-field theories successfully
describe the water and/or solid discharge relations at high
water discharges, while they fail at low water discharges. A
striking point is that cooperation turned out to be of great
influence when little particles were in motion, but of decreas-
ing strength when the number of particles was increased.
Third, this work sheds some light in the critical issues con-
cerning bed-load measurement in rivers �20�. Hydraulicians
and geomorphologists use various systems �Helley-Smith
sampler, bed-load trap� to measure the solid discharge by
capturing sediment over a given time interval. The crux of
the issues lies in the proper selection of the sampling time
�ranging from a few seconds to several minutes�, and this
difficulty of selecting a proper time scale is illustrated by the
large differences among various measurement systems.
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APPENDIX: EINSTEIN’S ORIGINAL FORMULATION

Derivation

In Einstein’s theory, the bed-load discharge qs is defined
implicitly as the imbalance of entrainment and deposition

rates, Ẽ and D̃, respectively,

�qs

�x
= Ẽ − D̃ .

Under steady and uniform flow conditions, the discharge gra-

dient vanishes and Ẽ= D̃; Einstein used this equality to com-
pute the solid discharge by assuming that the deposition rate
D is an implicit function of the solid discharge �19�, as we
shall see.

Einstein considered a window of length L=2�a, through
which he observed sediment transport. � is a free parameter
that will be specified below. The deposition rate D is defined
as the number of particles deposited per unit time within this
window,

D =
qs

vp
,

where vp=4�a3 /3 is the particle volume. The number of
particles eroded is related to the probability p that a station-
ary particle is entrained by the stream over a given time
interval tc. Since there are approximately N=2�a / �2a�=�
particles lying at the top of the bed within the window, Ein-
stein defined the entrainment rate per unit time as

E = �
p

tc
.

According to Einstein, the proper time scale tc is related to
the particle sedimentation velocity us: tc=ka /us, where k is a
constant parameter. He also explained that the window
length L must be selected so that it corresponds to the mean
of the probability distribution of the distances travelled by
the moving particles until they are deposited. He considered
that this probability distribution is related to the entrainment
probability p as follows. Let us consider that n particles are
entrained; the mean distance travelled by a particle is de-
noted by �. After travelling the distance �, �1− p�n are de-
posited while pn are not deposited. Among these particles,
p�1− p�n are deposited after traveling the distance 2�, but
p2n are still in motion, and so forth. The mean deposition
distance is then 2�a=�n=0

� �1− p�pn�=��1− p�−1. From these
considerations and the balance E=D, he deduced that

qs =
p

1 − p

�

2a

us

ka
vp =

1

k

p

1 − p

�vp

2a2 us. �A1�

Comments

First, as pointed out by Lisle et al. �26�, Einstein implic-
itly considered that bed-load transport results from alternat-
ing periods of motion and rest with a typical time scale of
motion that remains very short compared to the resting time.
In short, in Einstein’s approach, solid discharge does not de-
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pend on particle velocity, but only on the rate at which grains
are entrained from the bed. At approximately the same time
as Einstein, Kalinske �36� derived a bed-load equation from
particle velocity, but without determining the number of par-
ticles in motion. Surprisingly enough, it turns out that the
two major ingredients used here �the particle velocity and the
number of particles in motion� were already recognized
60 years ago as important when taken separately, but their
combination seems to have been overlooked.

Second, Einstein introduced the inverse of the settling ve-
locity us of the particle as the characteristic time tc, but with-
out really providing support for this. A number of papers
then elaborated on Einstein’s formulation and proposed dif-
ferent expressions for the typical time scale tc. For instance,
instead of tc�a�us�−1, Paintal �37� and Cheng �38� proposed
a different definition of the resting time or exchange time
tc�a�pu*�−1, with u* the shear velocity, which results in a
markedly different dependence of the solid charge on p.
Paintal �37� found that ṅ� p3�1− p�−1 versus ṅ� p2�1− p�−1

for Cheng �38�.

Third, in Einstein’s approach, the entrainment rate is E
= pNus / �ka�, where N is the density number of particles
available at the bed surface. This definition implies that at
high fluid velocities, the entrainment rate tends toward a con-
stant because the exceedance probability p comes close to
unity, which does not make sense. This shortcoming has
been seen as a failure of Einstein’s approach in computing
the solid discharge for any flow rate �39�. In fact, this short-
coming stems from the ad hoc assumptions used by �19�,
who considered that the features of particle motion remain
constant whatever the flow conditions, which contrasts with
observations �32�. Note also another obvious limitation of
Einstein-type models. At high fluid velocity, the exceedance
probability comes close to unity, which causes a nonphysical
divergence of the solid discharge in Eq. �A1�. In fact, al-
though bed/stream exchanges are the key ingredient of bed-
load transport for weakly intense flow conditions, they are of
decreasing importance with increasing fluid velocity because
the bed-load transport takes the form of sheet flows with
continuous particle motion �40,41�.
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