1,695 research outputs found

    Automatic Integral Reduction for Higher Order Perturbative Calculations

    Get PDF
    We present a program for the reduction of large systems of integrals to master integrals. The algorithm was first proposed by Laporta; in this paper, we implement it in MAPLE. We also develop two new features which keep the size of intermediate expressions relatively small throughout the calculation. The program requires modest input information from the user and can be used for generic calculations in perturbation theory.Comment: 23 page

    Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically

    Get PDF
    We present a method to evaluate numerically Feynman diagrams directly from their Feynman parameters representation. We first disentangle overlapping singularities using sector decomposition. Threshold singularities are treated with an appropriate contour deformation. We have validated our technique comparing with recent analytic results for the gg->h two-loop amplitudes with heavy quarks and scalar quarks.Comment: 8 pages, 3 figures; references added, version to appear in JHE

    Global symmetries of Yang-Mills squared in various dimensions

    Get PDF
    Tensoring two on-shell super Yang-Mills multiplets in dimensions D≀10D\leq 10 yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) D\mathbb{D} with each dimension 3≀D≀103\leq D\leq 10 we obtain formulae for the algebras g\mathfrak{g} and h\mathfrak{h} of the U-duality group GG and its maximal compact subgroup HH, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.Comment: 25 pages, 2 figures, references added, minor typos corrected, further comments on sec. 2.4 included, updated to match version to appear in JHE

    NNLO phase space master integrals for two-to-one inclusive cross sections in dimensional regularization

    Full text link
    We evaluate all phase space master integrals which are required for the total cross section of generic 2 -> 1 processes at NNLO as a series expansion in the dimensional regulator epsilon. Away from the limit of threshold production, our expansion includes one order higher than what has been available in the literature. At threshold, we provide expressions which are valid to all orders in terms of Gamma functions and hypergeometric functions. These results are a necessary ingredient for the renormalization and mass factorization of singularities in 2 -> 1 inclusive cross sections at NNNLO in QCD.Comment: 37 pages, plus 3 ancillary files containing analytic expressions in Maple forma

    The fully differential hadronic production of a Higgs boson via bottom quark fusion at NNLO

    Full text link
    The fully differential computation of the hadronic production cross section of a Higgs boson via bottom quarks is presented at NNLO in QCD. Several differential distributions with their corresponding scale uncertainties are presented for the 8 TeV LHC. This is the first application of the method of non-linear mappings for NNLO differential calculations at hadron colliders.Comment: 27 pages, 13 figures, 1 lego plo

    Cross-Order Relations in N=4 Supersymmetric Gauge Theories

    Full text link
    The anti-de Sitter/conformal field theory duality conjecture raises the question of how the perturbative expansion in the conformal field theory can resum to a simple function. We exhibit a relation between the one-loop and two-loop amplitudes whose generalization to higher-point and higher-loop amplitudes would answer this question. We also provide evidence for the first of these generalizations.Comment: 6 pages, talk given at the 3rd International Symposium on Quantum Theory and Symmetries, Cincinnati, OH, Sept 10-14, 2003; v2: Mispositioned figure in eqn. 1 fixe

    Loop lessons from Wilson loops in N=4 supersymmetric Yang-Mills theory

    Full text link
    N=4 supersymmetric Yang-Mills theory exhibits a rather surprising duality of Wilson-loop vacuum expectation values and scattering amplitudes. In this paper, we investigate this correspondence at the diagram level. We find that one-loop triangles, one-loop boxes, and two-loop diagonal boxes can be cast as simple one- and two- parametric integrals over a single propagator in configuration space. We observe that the two-loop Wilson-loop "hard-diagram" corresponds to a four-loop hexagon Feynman diagram. Guided by the diagrammatic correspondence of the configuration-space propagator and loop Feynman diagrams, we derive Feynman parameterizations of complicated planar and non-planar Feynman diagrams which simplify their evaluation. For illustration, we compute numerically a four-loop hexagon scalar Feynman diagram.Comment: 20 pages, many figures. Two references added. Published versio

    Numerical evaluation of loop integrals

    Full text link
    We present a new method for the numerical evaluation of arbitrary loop integrals in dimensional regularization. We first derive Mellin-Barnes integral representations and apply an algorithmic technique, based on the Cauchy theorem, to extract the divergent parts in the epsilon->0 limit. We then perform an epsilon-expansion and evaluate the integral coefficients of the expansion numerically. The method yields stable results in physical kinematic regions avoiding intricate analytic continuations. It can also be applied to evaluate both scalar and tensor integrals without employing reduction methods. We demonstrate our method with specific examples of infrared divergent integrals with many kinematic scales, such as two-loop and three-loop box integrals and tensor integrals of rank six for the one-loop hexagon topology
    • 

    corecore