
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/60133

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/16145982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/60133

ar
X

iv
:h

ep
-p

h/
04

04
25

8v
2

26
Ma

y
20

04

Preprint typeset in JHEP style. - HYPER VERSION SLAC-PUB-10408

Automatic Integral Reduction for Higher
Order Perturbative Calculations

C haralam pos Anastasiou"? Achilleas Lazopoulosb 1

a Theory Group, MS81, SLAC, 2575 Sand Hill Rd, Menlo Park, CA 94025,
U.S.A.
b Katholieke Universiteit Nijmegen, Theoretische Fysica, Postbus 9010, NL-6500
GL Nijmegen, The Netherlands
E-mail: bab is@ slac .stan fo rd .edu , lazopoul@ sci.kun.nl

A b s t r a c t : We present a program for the reduction of large systems of integrals
to m aster integrals. The algorithm was first proposed by Laporta; in this paper,
we implement it in MAPLE. We also develop two new features which keep the size
of intermediate expressions relatively small throughout the calculation. The pro­
gram requires modest input information from the user and can be used for generic
calculations in perturbation theory.

K e y w o r d s : NLO and NNLO Com putations.

*Research supported by the US Department of Energy under contract DE-AC03-76SF00515
^Research supported by the E.U. contract no. HPMD-CT-2001-00105

http://arXiv.org/abs/hep-ph/0404258v2
mailto:babis@slac.stanford.edu
mailto:lazopoul@sci.kun.nl
http://jhep.sissa.it/stdsearch?keywords=NLO_and_NNLO_Computations

1. Introduction

Perturbation theory is an indispensable calculational tool in particle physics. M eth­
ods for perturbative calculations have been developed concurrenlty with the intro­
duction of field theories for describing particle interactions. It is not surprising tha t
we already have very efficient tools which confront experimental data at a quantitive
level.

It is evident, however, th a t the current methods are not suitable for comput­
ing with sufficient accuracy all the required cross-sections at modern experiments.
At the LHC or a future Linear Collider, for example, we must study a number of
new complicated processes in the Standard Model or other theories. In addition,
small effects arising at higher orders in perturbation theory will become significant
in these experiments. It is im portant for such studies to improve or replace methods
which require substantial human intervention. Ideally, we should develop autom ated
methods applicable to every process, theory, and order in the perturbative expansion.

Two types of computations are generally required for the evaluation of cross­
sections and decay rates: loop integrations over the momenta of virtual particles,
and phase-space integrations over the momenta of particles in the final state. At
higher orders in perturbation theory both tasks are hard; this is primarily due to the
large number of integrals which typically appear. Unfortunately, methods for the
analytic computation of loop and phase-space integrals are complicated; it is usually
unrealistic to attem pt a brute-force computation for all terms in the matrix-elements.
A solution to this problem is to construct algorithms which reduce the number of
integrals to a few m aster integrals, and calculate directly the m aster integrals only.

The m ethod of integration by parts (IBP) for the reduction of loop integrals was
introduced in [2, 1]. Integrals which have common propagators (or, equivalently,
belong to the same topology) satisfy linear algebraic identities. These identities can
be derived with the IBP m ethod and can be cleverly combined to produce reduc­
tion identities to m aster integrals. Gehrm ann and Remiddi introduced a new class
of identities for scalar loop integrals due to their invariance under Lorentz transfor­
mations [3]. Lorentz invariance (LI) identities are particularly useful for multiloop
integrals with many external legs and massive propagators. Recently, the m ethod
of IBP and LI identities was extended to phase-space integrals th a t appear in the
evaluation of to tal cross-sections [4 , 5] and various differential distributions [6 , 7, 8].

Because of its conceptual simplicity, the IBP m ethod was used to construct
reduction algorithms for many classes of multi-loop integrals (see for example [9, 10,
11, 12, 13]). Nevertheless, the construction of such programs was laborious and a
systematic approach to produce reduction identities for arbitrary topologies was not
available; this was the main reason for the rather slow pace of multiloop calculations.

This situation is now improved due to Laporta, who has proposed a fully au­
tom ated m ethod for the reduction of generic loop amplitudes [14]. In contrast to

1

earlier approaches, his m ethod does not attem pt to derive reduction identities ap-
plicaple to all the integrals of a topology. Instead, the aim is to reduce one-by-one
the integrals by solving a large system of IB P /L I equations. This is achieved using
Gauss elimination, after the IB P /L I system is ordered according to the complexity of
the equations. Starting from the simplest one, each IB P/L I equation of the system is
rearranged following a few algorithmic rules: the terms of the equation are assigned
a relative weight for their complexity, and the most complicated term is then isolated
on the left hand side. A recursive application of this procedure leads to expressions
for complicated loop integrals in terms of master integrals.

The algorithm proposed by Laporta has already been used in a variety of calcu­
lations (for example in [15, 16, 17, 4, 5 , 18, 19, 20, 7, 8 , 21, 22, 23]). However, we have
found th a t its efficient implementation in a computer program is not trivial. The
main difficulties arise from the fact th a t typical multiloop calculations, such as the
ones mentioned earlier, require an enormous number of IB P /L I equations (105 —106).
In the process of Gauss elimination the algorithm can produce very large expressions;
one must optimize for their efficient manipulation.

In this paper, we provide a MAPLE 9 [24] computer program (AIR) based on
the m ethod of [14], for the A u to m a tic In te g ra l R e d u c tio n at higher orders in
perturbation theory. The user should supply tem plate IB P /L I equations for the
integrals of a topology, optional information on the vanishing integrals of the topology
and the m aster integrals (if known), and a small number of parameters controlling
the treatm ent of large expressions. There is no need for advanced knowledge of the
MAPLE platform. The input can be supplied with easy to modify text files, and
AIR can be controled with very simple scripts.

We believe th a t theorists who do not wish to invest in studying and implement­
ing reduction methods, but need to study higher order effects in perturbation theory
for various physical processes, will find this to be a valuable tool. We also hope tha t
this publication will initiate some activity and exchange of ideas on practical issues
concerning the implementation of reduction algorithms. In this program, we have im­
plemented computational tricks wich were developed during practical computations;
we hope our program will be improved from the experience of other users.

The cost in computer resources grows rapidly with the complexity of the study
process. It is inevitable th a t AIR will fail to solve arbitrarily large systems of equa­
tions with large number of symbolic param eters (corresponding to kinematic scales,
dimension, etc). However, we do expect AIR to be used for many applications in par­
ticle phenomenology beyond the current state-of-the-art. For this purpose, we have
included routines which minimize the number of computations during the reductions,
mainly by keeping the number and the size of the actively processed expressions for
Gauss-elimination to a minimum.

In Section 2 we review the main features of the algorithm of Laporta using the
massless one-loop box integral as a pedagogical example. In Section 3, we explain

2

the main features of AIR. In the rest of the paper we demonstrate the usage of
AIR through examples. In Section 4 we reduce the massless one-loop box topology
with no special algorithms activated for handling large expressions. In Section 5
we repeat the reduction by activating a “masking” algorithm which reduces the
amount of computations during Gauss elimination by storing away the expressions
which get reduced in terms of m aster integrals. In Section 6 we apply a different
masking algorithm for very large integral coefficients. In Section 7 we show how
to reduce topologies with a very large number of kinematic scales, by switching off
simplification routines. We use the reduction of the massless one-loop pentagon
topology as an explicit example. Finally, we present our conclusions in Section 8 .

2. T he reduction algorithm

In this Section we present the reduction algorithm which is used in our program. A
detailed description of the algorithm can also be found in Ref. [14]. Here we will
present its main features using the massless one-loop box topology as an explicit
example.

Vl

We consider the class of integrals:

»to.«*,«*,«!) = p +pi)»rk*+p«)t k *+ (2-1)
where we have introduced the shorthand notation p j...k = p + pj + . . . + pk. The
terms in the denominator are raised into positive or negative integer powers Vj. Zero
powers correspond to scalar triangle and bubble integrals; negative powers correspond
to triangle and bubble integrals with irreducible numerators. The external momenta
are all taken to be light-like, p2 = p2 = p 2 = p ^23 = 0. These integrals arise in
one-loop QCD amplitudes for 2 ^ 2 scattering processes (e.g. gg ^ gg [25]).

It will be useful to know the values of the parameters v for which the correspond­
ing integrals vanish (tadpoles, scale-less bubbles). This information is not formally
required; by solving the IBP equations one will eventually find th a t tadpoles, etc,
are indeed vanishing. However, it is more efficient for the reduction to utilize the

3

fact th a t many terms in the IBP equations are zero. We find the following vanishing
integrals:

B (vi ,V2 , V3, V4) = 0,

if

or

or

or

or

0 (vi) + 0 (V2) + 0(V3) + 0(V4) < 2 ,

0 (vi) + 0 (V2) = 0 ,

0 (V2) + 0 (V3) = 0 ,

0 (V3) + 0 (V4) = 0 ,

(2 .2)

(2.3)

(2.4)

(2.5)

(2 .6)

(2.7)0 (V4) + 0 (vi) = 0 ,

where we define 0 (x) = 1 for x > 0 and 0 (x) = 0 for x < 0 .
Now we proceed to find algebraic equations for the integrals of the box topol­

ogy. An easy way to derive such identities is the IBP m ethod [1, 2]; we multiply
the integrand with a loop or external momentum and differentiate it with the loop
momentum. These to tal derivatives integrate to zero:

0 ddk
d

d k ß [k2P [(k + p i)2]V2 [(k + p i2)2P [(k + pi23)2]V4
(2 .8)

where n = k, k + p i , k + p i2, k + p i23. We obtain four IBP identities:

L + + (d — Vi2334) — (vi 1+ + V22+

tv2 2 + (d — Vi2344) — ^Vi 1 + V2 2 + V33

t » / - Q+ _ L _ , / ________ ̂ 0 + _L_ 7/„Q+ _ L

+
3- B (2.9)

+)
4 - B (2 .10)

l+î
1- B (2 .11)

+)
2- B (2 .12)

Ti : 0

T2 : 0

T3 : 0 l

T4 : 0 = tV44+ + (d — Vi2234) — (v21+ + V33+ + V44H

where the action of i+ (i-) increases (decreases) v by one in the integral B , e.g.

3±B = B (vi ,v 2,v 3 ± 1,v4). (2.13)

Products of operators have a straightforward interpretation, e.g.

3+ 1- B = B (v i — 1, v2, v3 + 1, v4). (2.14)

We have also used the shorthand: Vjjjk... = v + 2vj + vk + . . . , and we define the
usual M andelstam variables s = p i2, t = p23.

The IBP Eqs. 2.9-2.12 and, optionally, the results of Eqs. 2.3-2.7 are sufficient to
reduce any integral of the box topology to master integrals by using the algorithm

n

4

of Laporta [14]. In Ref. [14], the reader can find a detailed and complete description
of the algorithm; here we intend to emphasize its salient features. The user is not
required to have knowledge of the algorithm, however, some familiarity will be ben­
eficial. We will describe the algorithm by tracing the first steps of our code when
solving the box topology. For concretness, we will stop when the integral B(1, -1, 1,
0) is reduced in terms of master integrals.

• Seed generation: The program starts with the simplest list (vi , v2, v3, v4) for
which B (v i , v2, v3, v4) is not vanishing,

Si : (vi,V2,V3,V4) = (1, 0,1, 0). (2.15)

S1 will be our first ‘seed’ for generating identities from the topology IBP equa­
tions Ti , . . . ,T4 (Eqs. 2.9-2.12), which we use as templates.

• Identities generated from the template IB P equations: Our first identity is Eq.
Ti substituting the values of [v i] found in S i :

E i : sB(2, 0,1, 0) + (d — 3)B(1, 0,1, 0) = 0. (2.16)

In e 1, we have already used our knowledge for the vanishing integrals of the
topology (Eqs. 2.3-2.7).

The above equation can be recast to express one of the two integrals in terms
of the other. We would like to use such equations to express more complicated
integrals in terms of simpler ones and, finally, in terms of the m aster integrals.
It is therefore necessary to introduce criteria for the complexity of the integrals;
the most complicated should receive first priority and will be isolated in the
left hand side.

• Integral priority criteria: We check on three parameters in order to isolate the
most complicated integral. First we select the integrals with the largest number
of propagators:

Nprop = £ 0 (V j) . (2.17)
i

If more th a t one integral has the maximum N prop, we select the one with the
largest sum of positive indices vi

N+ = Ç 0 (vj)(vj — 1). (2.18)
i

If more than one integral has the maximum values of N prop and N+, we select
the one with the largest sum for the m agnitutes of negative indices vi

N - = — 0 (—vi)vi. (2.19)
i

If still there is an ambiguity, we randomly choose one of the integrals which
has survived all three criteria.

5

• Rearranging the identities: Following the previous criteria, we find th a t B(2, 0,
1, 0) is the most complicated integral in E 1. We then rearrange the identity to
produce:

3 —d
E \ : B (2, 0,1,0) = -------B{ 1, 0,1,0). (2.20)

s
We proceed, in the same manner, with the remaining identities T2,T3,T4 for
S i . We obtain:

E? : B(2, 0,1, —1) = (d — 2)B(1, 0,1, 0) — B (1, 0, 2, —1), (2.21)

3 —d
E? : B (1, 0, 2, 0) = -------B (1, 0,1, 0), (2.22)

s
and

E4 : B (2, —1,1, 0) = (d — 2)B(1, 0,1, 0) — B (1, —1, 2, 0). (2.23)

• Seed priority criteria: We have now processed all IBP equations for the first
seed S i . It is therefore necessary to choose a new seed to obtain more identities.
It is im portant to choose seeds th a t are most likely to produce equations coupled
with the ones which have been processed earlier. For this purpose, we could
select the seeds with the opposite priorities than the integral priorities, i.e. the
seed with succecively minimum values for [NProp, N - , N+]. However, the rules
for choosing the seeds are mostly empirical and require some experimentation.
In fact, the order for applying the criteria for minimum N - and N + can be
judiciously chosen according to the class of integrals th a t the user needs to
compute. For example, we could now pick either (1, —1,1, 0) or (2, 0,1, 0) as
the next seed. Since our goal is to compute B(1, —1,1, 0) it is better to choose:

S2 : (vi,V2,V3,V4) = (1, —1,1, 0). (2.24)

which in the IBP equations generates integrals with the same structure as
the one we want to solve. Our program generates the seeds automatically;
the user must provide the range of NProp,N _ ,N + as input. It is relatively
straightforward to decide the values for these param eters by inspecting the
integrals th a t are required in the study process.

• Substitutions and Gauss-Elimination: We now find a new feature in Eq. T for
the seed S2:

E i : s B (2, —1,1, 0) + (d — 2)B(1, —1,1, 0) = 0. (2.25)

The integral B (2, —1,1, 0) is isolated at the left hand side (lhs) of a previ­
ous equation (E 4). In such cases, we eliminate the known integral from the

6

equation. Substituting Eq. 2.23, and applying the integral priority criteria, we
have:

d — 2
E \ : £ (1 , - 1 , 2,0) = —^—£ (1 , - 1 ,1 ,0) + (d - 2)£(1, 0,1, 0) (2.26)

• Back-substitution: E 2 is solved in terms of an integral th a t can be substituded
back to E 4. We can now see how the Laporta algorithm works in practice;
by adding new equations to the already solved equations we form new sub­
systems of coupled equations wich eliminate previously unknown integrals. In
our example, performing the substitution of E2 into E 41 we obtain,

2 —d
E \ : £ (2 , - 1 ,1 ,0) = -------£ (1 , -1 ,1 ,0) . (2.27)

s

We process two more equations for the seed S2:

E 22 : B(2, —1,1, —1) = —tB (1, 0,1, 0) + (d — 1)B (1, —1,1, 0)

+B (1 , 0,1, —1) — B(1, —1, 2, —1), (2.28)

and s
E \ : £ (1 , -1 ,1 ,0) = - - £ (1 ,0 , 1 ,0) . (2.29)

In the last equation we have computed the integral th a t we wanted in terms of
a simpler one: B(1, 0,1, 0). It is clear from the previous equations th a t B(1, 0,
1, 0) is a m aster integral.

In summary, the algorithm requires the succecive generation of identities with
terms of increasing complexity. The newly added equations usually contain terms
which are also found in equations generated at earlier stages; this produces small
subsystems of coupled algebraic identities. A series of substitutions diagonilizes these
algebraic subsystems and yields complicated integrals expressed in terms of m aster
integrals. The algorithm is a clever implementation of Gauss elimination. It exploits
the fact th a t Feynman integrals can be ordered according to very simple criteria.

We dem onstrated how the algorithm reduces a number of integrals belonging
to the massless one-loop box topology. However, there was no step in the previous
reduction th a t depended on the specifics of the topology. Therefore, this algorithm
is suitable for the reduction of generic multiloop integrals or, more generally, of
param etric functions which satisfy coupled algebraic identities (e.g. hypergeometric
functions).

3. Features o f A IR

In this Section we describe the basic functions of our program. The program is in­
cluded as a gzipped and tarred file in the source submission of the electronic preprint

7

for this paper, and can also be downloaded from Ref. [26]. It is convenient to unzip
and untar the distribution file in a directory where AIR can be located permanently.

/home> t a r -zx v f a i r . t a r . g z
AIR/
AIR/main.map
AIR/BOXA/
AIR/BOXA/input_boxa.map
AIR/BOXA/script_boxa.map
AIR/BOXB/
AIR/BOXB/input_boxb.map
AIR/BOXB/script_boxb.map
AIR/BOXC/
AIR/BOXC/input_boxc.map
AIR/BOXC/script_boxc.map
A IR /Pentagon/
A IR /P en tagon /inpu t_pen tagon .map
A IR /P en tagon /scrip t_pen tagon .m ap
A IR/Pentagon5/
A IR /Pentagon5/input_pentagon.m ap
A IR /P en tag o n 5 /sc rip t_ p en tag o n .map

The distribution includes the program file main.map, input files input-- ■ - .map,
as well as MAPLE scripts script_• • - .map for the example reductions in the rest of
the paper. The program consists of MAPLE routines for generating seeds for the
tem plate IB P /L I identities, finding integral priorities, generating the IBP equations
from the seeds, performing Gauss-elimination, masking large integral coefficients and
reduced expressions, performing nested substitutions, and collecting the results. The
function of the more im portant routines will be detailed in the following Sections.

In typical multiloop computations, a large number of identites should be pro­
cessed. A database system is therefore required to access, modify, and store the
equations. We have implemented a rather simple database system, where each IBP
equation is stored in a single file; the name of the file is determined by the integral
on the lhs of the equation. We also create separate auxiliary files which serve to
point to the equations in the IBP system where a particular integral can be found.
Our database system is very robust; however, it creates a rather extended tree of
directories wich usually contain very short ASCII files.

The program can perform very complicated multiloop reductions. It is often
possible to simplify all the terms in the IBP equations as they get substituted and
rearranged for Gauss elimination. However, if the topology depends on many kine­
matic scales, or the IBP equations are loosely coupled (creating large subsystems of
equations before they get diagonalized), or the values for NProp, N ± are large, it may

8

not be feasible to perform all simplifications within acceptable times or the available
memory. We have implemented two algorithms to perform the reductions efficiently
and reduce the amount of computations; the algorithms can be used independently
or in conjuction.

The first algorithm masks subexpressions which are reduced in terms of m aster
integrals. The program detects the reduced expressions, stores them in files, and re­
places them by an indexed symbol. Thus, the masked expressions are protected from
subsequent manipulations during Gauss elimination. This feature is implemented
recursively; whenever a new expression is w ritten in terms of masked expressions
and /o r m aster integrals, the new expression is also masked. At the end of the re­
duction, a series of nested substitutions is required in order to rewrite the masked
expressions in terms of the m aster integrals. We will discuss the required nested
substitutions later; for now, we should note th a t the masking algorithm reduces sig­
nificantly the amount of computations during the process of Gauss elimination. The
algorithm requires th a t the master integrals of the topology are known. To deter­
mine them, one can perform a less involved reduction for relatively small values of
N ± without using the masking algorithm. When the m aster integrals are found,
the user can repeat the reduction for larger values of N±, activating the masking
algorithm.

The second algorithm aims to reduce the size of the equations by masking all
integral coefficients which are lengthier than a user-defined maximum value. During
Gauss-elimination, however, some integral coefficients vanish; the elimination cannot
take place if the coefficients contain masked expressions. To solve this problem we
check numerically for cancelations. The user needs to provide as input, numerical
values for all the parameters (kinematic scales, dimension) which enter in the sym­
bolic expressions for the integral coefficients of the IB P /L I equations. The masking
algorithm substitutes these numerical values and stores both the numerical result
and the symbolic expression for the coefficients. The program determines if a coeffi­
cient is zero by inspecting the numerical result, thus, avoiding complicated symbolic
manipulations. To ensure th a t cancelations are not accidental, the program can per­
form the numerical testing of the values of the coefficients for more than one choices
of numerical values for the kinematic parameters and the dimension. The analytical
value of the lengthy coefficients is computed at the end of the reduction, and only
for the integrals th a t are required for practical purposes.

The purpose of the two algortihms is to remove complications from the symbolic
manipulation of very large expressions. However, after Gauss-elimination we must
still perform computations which were defered by using the masking algorithms, i.e.
we must perform a series of nested symbolic substitutions for the used alias symbols
in order to compute the masked expressions explicitly in terms of the kinematic
parameters, the dimension, and the m aster integrals. It is possible to imagine tha t
this additional computation is as difficult as using the program without the masking

9

algorithms, where all substitutions take place explicitly during Gauss elimination.
This is not the case; usually, only a fraction of the to tal number of masked expressions
is required for the integrals th a t appear in the matrix-elements of a physical process.
For example, the integral B(2, —1,1, 0) of the previous Section does not appear in
the computation of e.g. gg ^ gg, however, it appears in the IBP equations. By
using the masking algorithms, we avoid computing the masked expressions for many
such integrals.

The remaining nested substitutions can still be challenging for very complicated
problems. One can resort to tricks such as expanding in the dimension param eter [9]
or in kinematic param eters (e.g. electron mass in Bhabba scattering), if this is
justified from the physics of the process. However, this is rarely needed; there are
many processes where we can perform the substitutions without giving up on a
valid evaluation of the integral coefficients for all values of the kinematic parameters
and the dimension. AIR includes general purpose routines for a straightforward
computation of recursive substitutions; these routines attem pt a brute-force symbolic
simplification of all the intermediate expressions. It also provides the option to switch
off simplification of expressions th a t exceed a maximum length or, if necessary, to
transfer the most complicated substitutions to another platform, e.g. FORM [27].

In the following Sections we perform four example reductions which can serve as
a tutorial for using AIR and its main features. A technical description of the AIR
routines can be found in [26]. The source code of the program is openly distributed;
the users are free to modify it. The authors will be greatful to receive suggestions
and constructive feedback.

4. R eduction w ith no m asking

We now perform the reduction of the massless one-loop box topology. In this Section
we do not activate any of the two masking algorithms. The input file and the
corresponding script for the reduction can be found in the directory:

/home/AIR/BOXA

The input file for the reduction is named input_boxa. map. It contains variables
which are used globally by AIR. These are:

ib p _ eq u a tio n s := [
-nu3*B (nu1-1, nu2, nu3+1, nu4)-nu4*B (nu1-1 ,nu2 , nu3 , nu4+1)
-nu2*B (nu1-1, nu2+1, nu3 , nu4)+nu3*s*B(nu1,nu2 , nu3+1,nu4)
+ (-nu3-nu2-2*nu1+d-nu4)*B(nu1, nu2 , nu3 , n u 4) ,
nu4*t*B (nu1,nu2,nu3,nu4+1)-nu3*B (nu1,nu2-1,nu3+1,nu4)
+ (d-2*nu2-nu3-nu1-nu4)*B (nu1,nu2 , nu3 ,nu4)
-nu4*B (nu1 ,nu2-1 ,nu3 ,nu4+ 1)-nu1*B (nu1+ 1,nu2-1 ,nu3 ,nu4),

10

-nu1*B(nu1+1, nu2, n u 3 -1 , nu4)+ (-nu2+d-nu4-nu1-2*nu3)
*B (nu1,nu2, nu3, nu4)-nu4*B (nu1, nu2 , nu3-1,nu4+1)
-nu2*B(nu1, nu2+1, n u 3 -1 , nu4)+nu1*s*B(nu1+1, nu2 , nu 3 ,n u 4) ,
-nu1*B(nu1+1, nu2, nu3, nu4-1)-nu2*B (nu1,nu2+1, nu3 , nu4-1)
-nu3*B (nu1,nu2,nu3+1,nu4-1)+nu2*t*B (nu1,nu2+1,nu3,nu4)
+ (-nu3+d-nu2-nu1-2*nu4)*B(nu1, nu2 , nu3 , nu4)
] :

• This is a list of tem plate IBP identities (Eqs. 2.9- 2.12) for the box topology.
The program reads off some additional implicit definitions from the structure
of the IBP equations. For example, it is now defined th a t the name of the
topology is " B ” and the powers of the propagators are defined through the
variables nu1, nu2, nu3, nu4.

ZERO_TOPOLOGIES:=[
ThetaF(nu1) + ThetaF(nu2) + ThetaF(nu3) +ThetaF(nu4) < 2,
ThetaF(nu1) +ThetaF(nu2) =0,
ThetaF(nu2) +ThetaF(nu3) =0,
ThetaF(nu3) +ThetaF(nu4) =0,
ThetaF(nu4) +ThetaF(nu1) =0,
NULL]:

• This is a list of statem ents (Eq. 2.3-2.7) which undergo boolean evaluation when
the propagator powers are substituted by integers. If any of the statem ents is
true, then the corresponding integral is set to zero.

MASTERS : = [] :

• This variable activates the algorithm for masking reduced expressions to m aster
integrals. It contains a list of known m aster integrals. In this example, we do
not want to activate the algorithm; therefore we define the above variable to
be an empty list.

c h e c k _ v a lu e s := [] :

• This variable activates the masking algorithm for integral coefficients which ex­
ceed a maximum value. It should contain numerical values for all the kinematic
param eters and the dimension in the IB P /L I equations. For this example, we
do not want to activate the masking algorithm and we set the variable to an
empty list.

MAXLENGTH:=1000 :

11

• This variable is used by the masking algorithm for large integral coefficients.
It defines the maximum length for a coefficient in order not to get masked.
The length of an expression is measured by the number of characters in the
expression and is determined by a MAPLE routine. The value of the variable
is irrelevant if the check_values list is empty.

MAXSIMPLIFY:=10~10:

• This variable is used by the routines which perform nested substitutions for
the masked expressions and the routines which display the final results. It
sets a maximum length for the expressions th a t MAPLE is allowed to simplify.
Larger expressions get substituted but not simplified.

MAPLEMAXSUB:=10~10:

• This variable is used by the routines which perform nested substitutions of
masked expressions, and the routines wich display the results. It sets a maxi­
mum length for the expressions th a t MAPLE is allowed to substitute. Larger
expressions are not w ritten explicitly and are kept masked. In this reduction
we want all coefficients to be explicit, and we set the value of the variable to a
practically unreachable value.

VERBOSE :=FALSE:

• This variable is used to display information about the progress of the program.
If set to TRUE, the program outputs on the screen the seed th a t is processing,
or, after Gauss-elimination is comleted, the index of the masked expression
th a t is evaluating.

The file scrip t_boxa.m ap contains all the calls to AIR for reducing the box
topology. We can run the script from the shell command line:

/home/AIR/BOXA> maple scrip t_boxa.m ap

It will be more instructive for this first application to call the routines interactively
from within the MAPLE platform. We fisrt launch MAPLE,

/home/AIR/BOXA> maple

and load the input for the topology and the main program:

> c u r r e n td i r (' ' /home/AIR/BOXA' ') :
> read ' 'in p u t_ b o x a .m a p '' :
> read ''/h o m e/A IR /m a in .m ap '':

12

The user should now perform the following tasks:

• Seed generation: We create a list with sets of integers for deriving IBP equa­
tions from the tem plate equations of ibp_equations. This is accomplished by
calling the routine

S E E D G E N (“filen am e” , m a x to p , [m in N p ro p ,m ax N p ro p], [m inN m i-
nus, m ax N m in u s], [m inN plus, m ax N p lu s]) ;

The first argument is the filename where the seeds will be written. The next
argument, maxtop, is a list with integers {i} denoting the propagators raised
to positive powers {v^} in the seed with the highest priority. For example, if
we are inerested in reducing all the integrals of the box topology and all its
subtopologies we should set maxtop = [1, 2, 3, 4], indicating th a t all vi, v2, v3, v4
can appear with positive values. If we only required integrals of e.g. a t-channel
triangle subtopology, we could set maxtop = [1, 3, 4], indicating th a t seeds with
positive v2 do not need to be included in the reduction. The next three en­
tries determine the range of NProp, N _, and N+ repsectively. These values are
mostly empirical. A rule of thumb is th a t one should generate seeds wich in­
clude the indices of the most comlicated integrals to be reduced, as well as the
complete tower of integrals with lower priorities. To give a concrete example,
we will generate seeds for the integrals th a t appear in the one-loop gg ^ gg
amplitude. We find integrals from all subtopologies (bubble and triangles) of
the box topology, therefore we set 2 < N prop < 4. We also find th a t all inte­
grals have N+ = 0 (there are no squared propagators in the amplitude), and
can have up to 4 powers of irreducible numerators: 0 < N _ < 4. To emphasize
differences in the running times for various algorithms of the program we will
extend the la tter interval to 0 < N _ < 10 .

> SEEDGEN(' ' s e e d s .map' ' , [1, 2, 3, 4] , [2, 4] , [0, 10], [0, 0]) ;

The routine produces a list of ordered seeds in the file /home/AIR/BOXA/seeds.map.

• Gauss elimination : We generate the IBP equations from the seeds and perform
Gauss elimination by calling the routine

R e d u c e r (“seeds_file” , “m o n ito r_ file” , “R E S U L T S _ D IR ”);

The first argument is the name of the file with the seeds for the reduction
(as it was produced with SEEDGEN). The next argument is the name of a file
which the program updates with the processed seeds; it serves to monitor the
progress of the program. The last argument provides a directory path where the

13

program can deposit the database with the IBP equations. For our example,
we type

> R e d u c e r (' 's e e d s .m a p '', ' 'c a l c . m a p ' ' , ' ' . ' ') ;

It is useful to inspect the /home/AIR/BOXA directory. The program has cre­
ated a number of subdirectories (B_l_3, B_l_3_4, etc) which correspond to the
non-vanishing subtopologies of the box topology. In these subdirectories, AIR
stores the IBP equations after they have been rearranged to isolate the most
complicated integral at the lhs of the equation. For example, Eq. 2.29 is stored
in

/home/AIR/BOXA/B_1_3/B_1_-1_1_0.map

The first part of the file path /home/AIR/BOXA/ corresponds to the directory in
the th ird argument of the Reducer command. The second part of the file path
B_l_3 is created from the integers {*} for which the powers {ui} are positive.
The ending of the file path is created from the indices {v^} of the integral.

• Collecting the results: Essentially the reduction is now complete; the reduced
integrals can be found in the files of the database tree for the IBP equations.
Inspecting some of the equations we find th a t many integrals are reduced in
terms of three m aster integrals: B(1, 0, 1, 0), B(0, 1, 0, 1), and B(1, 1, 1, 1).
However, we also find integrals which are not fully reduced, e.g. the integral
B(2, 1, 1, -11). It is usually observed th a t integrals with the same indices as in
the seeds are fully reduced. Motivated from this observation, we have written
a routine for collecting in a separate directory the seed integrals:

t id y _ lis t(“seeds_file” , “R E SU L TS_D IR ”);

The first argument is a file with seeds (as generated by SEEDGEN). The last
argument is the directory where the program has placed the results (as in the
th ird argument for Reducer). For our example, we type:

> t i d y _ l i s t (' ' s e e d s . m a p ' ' , ' ' . ' ') ;

The routine has created a subdirectory, named RESULTS, wich contains the ex­
pressions for the seed integrals only. For example, one can find the integral
B (l, -4, 1, 1) in the file /home/AIR/B0XA/RESULTS/B_l_3_4/B_l_-4_l_l .map.
We should note th a t when the masking algorithms are activated, the t i d y _ l i s t
routine also performs the required nested substitutions for expressing the co­
efficients of the m aster integrals in terms of the kinematic parameters and the

14

dimension. However, it does so only for coefficients with smaller size than the
MAPLEMAXSUB value. It is possible to achieve a fast execution of the t i d y _ l i s t
routine if we choose a low value (100-500) of MAPLEMAXSUB. The task of comput­
ing large coefficients is postponed further, and is performed by a new routine
which we shall describe shortly. This routine is customized to disentagle the
newest masking, which has a simpler structure than the masking of Gauss-
elimination, very efficiently.

• Reading the results interactively: A useful routine for reading the reduced in­
tegrals from within the MAPLE environemnt is

show _int(integral, R ESU LTS_D IR);

The first argument is the required integral, and the second is the directory
of the reduction (as in Reducer). For example,

> show _int(B (1 , -4 , 1, 1) , ' ' . ' ') ;

outputs the expression for the required integral in terms of master integrals.
This routine can be used for purposes of interfacing the results of the reduc­
tion to other programs th a t users develop for calculating matrix-elements. We
should note th a t if the masking of m aster integrals is activated and the value
of MAPLEMAXSUB is small, show_int will return the wanted integral as a lin­
ear combination of m aster integrals but with masked coefficients. The routine
show _fu ll_ in t displays the unmasked result.

We have described the basic variables and routines of AIR by performing the reduc­
tion of the box topology. It is worth noting th a t the to tal running time for the three
main routines (SEEDGEN, Reducer, tidyJist) is approximately two minutes on a
1.6GHz processor.

5. M asking reduced expressions

In this section we repeat the reduction of the one-loop massless box topology pro­
viding the known m aster integrals as input to the program. The algorithm uses this
information to find parts of expressions which are reduced to m aster integrals, and
masks them. The reduction proceeds faster, having replaced the masked expressions
by indexed symbols K (i). When the step of Gauss elimination is completed, only
the indexed symbols in the expressions of the seed integrals need to be computed
explicitly.

The reduction is performed in the directory /home/AIR/BOXB. The program al­
lows, in principle, activation of the masking algorithm for m aster integrals w ith­
out changing directory. However, we recommend performing the reduction in a

15

new directory if new values for the variables ZERO-TOPOLOGIES, ibp_equations,
MASTERS, check_values, and MAXLENGTH are required. This will prevent possible
integral misidentifications caused from creating the database of IBP equations with
inconsistent values for these variables.

The input file input_boxb .map is modified to activate the masking algorithm for
m aster integrals. In particular, the variable for the m aster integrals is not empty; we
have defined

MASTERS : = [
B (1 ,0 ,1 ,0) ,
B (0 ,1 ,0 ,1) ,
B (1 ,1 ,1 ,1)] :

These are the m aster integrals tha t we found in the first reduction.
We now execute the MAPLE script in script_boxb.m ap:

currentd ir("/hom e/A IR /B O X B "):
re ad "input_boxb.m ap":
re ad "/home/AIR/main.map":
SEEDGEN("seeds.map", [1, 2, 3, 4] , [2, 4] , [0, 10], [0, 0]) :
R educer("seeds.m ap", "ca lc .m ap ", " . ") :
t id y _ l is t (" s e e d s .m a p " , " . ") :

The script is executed in less than a minute; this is approximately 50% faster than
without the masking algorithm. The routine Reducer has created a tree of subdirec­
tories ICED/ICED#/KEXPR, where the masked expressions are stored in files named
kexpr_i.m ap. The expressions are replaced in the reduction by the symbol K{%),
where i is an integer index.

The masked expressions are defined recursively; it is therefore necessary to per­
form a series of nested substitutions before we obtain their explicit form in terms
of master integrals. This task is performed by the t i d y _ l i s t routine, which stores
explicit results for the masked expressions in the directory /home/AIR/BOXB/KMELT.
The user is not required to know the details about the file structure for the masked
expressions; the integrals in the directory RESULTS are fully evaluated in terms of
m aster integrals and can be accessed as before.

6. M asking large integral coefficients

In this Section we describe the function of the algorithm which masks large inte­
gral coefficients in the IBP equations. We perform the reduction in the directory
/home/AIR/BOXC, which contains the input file input_boxc .map and the appropriate
MAPLE script scrip t_ b o x c .map. We have modified the input variables:

16

MASTERS : = [] :
ch eck _ v a lu es :=[
[s=1 , t= - 0 . 1 2 , d=3.3] ,
[s= -1 .2 , t= 1 2 .2, d= 42],
[s= 1 .82 , t= - 0 .345, d = -2 8 .1]
] :
MAXLENGTH:=50 :

In this run we have deactivated the algorithm for masking reduced expressions. In­
stead, we have provided a list of numerical values for the kinematic param eters and
the dimension which activates the algorithm for masking the integral coefficients with
length bigger th a t the value of the MAXLENGTH variable. The MAPLE commands for
the reduction are collected in the file sc rip t_ b o x c .map,

r e s t a r t ;
currentd ir("/hom e/A IR /B O X C "):
re ad "input_boxc.m ap":
re ad "/home/AIR/main.map":
SEEDGEN("seeds.map", [1, 2, 3, 4]
R ed u cer("seeds.m ap", "ca lc .m ap " ,
t id y _ l is t (" s e e d s .m a p " , " . ") :

The script is executed in about 90 seconds; this is slower than previously. In general,
masking large coefficients is not as fast as masking the reduced expressions to m aster
integrals. However, in reductions of complicated IBP systems, such as in mulitloop
crossed topologies, we have found th a t this algorithm is indispensable. In extremely
complicated problems it is required th a t both masking algorithms are activated.

In the directory ICED we find two new subdirectories: EXPR and NUM. The rou­
tine Reducer saves the expressions for the masked large integral coefficients in the
first directory. In the second directory, it stores the numerical values of the same
coefficients for the choices of the parameters in check_values. Expressions in the
directory EXPR are defined recursively through other masked expressions. However,
in the directory NUM they are explicitly evaluated for the special input values of the
parameters. The program sets an expression to zero in the IBP equations if its
numerical values is zero for all input choices in check_values. It is im portant to
provide “sufficiently random ” lists of numerical values for the param eters in order
to reduce the risk for accidental cancelations. It is im portant to note tha t floating
point numbers in check_values are automatically converted to fractional numbers
when used in the program. Therefore, the numerical evaluation of coefficients is
exact (using integer arithmetics), avoiding complications due to rounding.

Finally, the results are collected in the directory RESULTS using the routines
t i d y _ l i s t and show_int. We should stress, th a t the results

, [2, 4] , [0, 10], [0, 0]) :

17

7. R eduction o f one-loop pentagons

In this section we perform the reduction of the one-loop pentagon with massless
propagators. This is an example of a topology with many kinematic parameters. As
is common in such topologies, the expressions for the reduced integrals are large. We
will therefore use this example to demonstrate the options in AIR for dealing with
large expressions.

We consider the class of integrals:

V(vi, V2, V3, V4, V5) =

[cldk
1

(7.1)

where p i2345 = 0 and p 2
pentagon topology are:

[k2]V1 [(k + p i)2]V2 [(k + pi2)2P [(k + pi23)2]V4 [(k + pi234)2p

0. The IBP equations for thep22 p 23 p24 p 25

vi l + s i2 + v5 5+S34 + (d — vi23345) —

v22+s23 + vi l + s45 + (d — vi23445) —

v33+s34 + v22 +s5i + (d — vi23455) —

v44 +s45 + v33 +s i2 + (d — vii2345) —

v55 +s5i + v44 +s23 + (d — vi22345) —

(v i1+ + V2 2+ + V44+ + V5 5+

(vi1+ + V2 2+ + V33+ + V5 5+

(vi1+ + V2 2+ + V33+ + V4 4+

(v22+ + V33+ + V44+ + V5 5+

(v i1+ + V33+ + V44+ + V55+

3- = 0 (7.2)

4 - = 0 (7.3)

5- = 0 (7.4)

1- = 0 (7.5)
2 - 0 (7.6)

where we denote the invariant masses S j = p j . We also note th a t the topology
vanishes if any three adjacent propagators are raised to non-positive powers.

After a preliminary run with no masking algorithms we find 11 master integrals:

• the pentagon integral V (1, 1, 1 , 1, 1),

• the box integals V (1, 1 , 1, 1 , 0), V (1, 1 , 1, 0 , 1), V (1 , 1, 0 , 1, 1), V (1 , 0 , 1 , 1, 1),
V (0 , 1, 1 , 1, 1), and

• the bubble integrals V (1, 0 , 1, 0 , 0), V (1, 0 , 0 , 1, 0), V (0 , 1, 0 , 1, 0), V (0 , 1, 0 , 0 , 1),
and V (0 , 0 , 1 , 0 , 1).

18

Remarkably, by using the algorithm for masking reduced expressions, the step of
Gauss elimination is very fast and can be performed for far more complicated inte­
grals than the ones th a t are practically needed; it only takes a few minutes before a
sufficiently large number of integrals for QCD five-point amplitudes is solved. How­
ever, keeping the variable MAPLEMAXSUB in unreachable values (i.e. switching off the
special routines for large coefficients, as we did in all previous examples), forces the
routine t id y _ in t to carry the load of all substitutions and simplifications. The pres­
ence of five independent M andelstam variables and the dimension param eter makes
the step of nested substitutions very hard for the integrals with highest priority. The
routine can get stalled in computers with a memory smaller than 1GB.

We set the variable MAPLEMAXSUB to a value of 100 in the input_pentagon.m ap.
The reduction routine Reducer is not affected by the new setting, however, the nested
substitution routine t i d y _ l i s t runs differently; it does not perform simplifications on
any expression with more than 100 characters. Instead, it replaces these coefficients
with indexed aliases, {ƒ [i]}. The routine does not process large coefficients, and
finishes very quickly. The difficult substitutions for the masked expressions ƒ [i] are
performed with a new routine m e lt_ a ll_ f This routine is designed to work
with the smallest possible memory consumption. Finally, the user can display the
seed integrals explicitly w ritten in terms of m aster integrals, the dimension, and the
kinematic parameters, using the show _fu ll_ in t routine.

It is worth demonstrating some im portant technical details for the reduction.
We perform the reduction in the directory /hom e/AIR/Pentagon, where we have
placed the input file input_pentagon.m ap, and a script for executing the AIR rou­
tines s c r i p t .pen tagon , map. As usual, in the input file we have provided the IBP
equations, conditions for vanishing integrals, and the list of m aster integrals. We
also set values for the variables,

MAXLENGTH:=100 :
MAXSIMPLIFY:=1500 :
MAPLEMAXSUB:=100 :
VERBOSE :=FALSE:

We now perform the reduction of integrals of the pentagon topology with N _ < 4,
and N+ = 0 .

\home\AIR\Pentagon> maple scrip t_ p en tag o n .m ap

The script is executed in approximately 10 minutes using approximately 40MB of
memory. At this point it is worth making some observations about the results of
the reduction. We launch a MAPLE window, load the AIR files for the pentagon
topology, and read the result for one of the reduced integrals:

> c u r r e n td i r (' ' /hom e/A IR/Pentagon

19

> read ' 'in p u t_ p e n ta g o n .m a p '';
> read ''/h o m e/A IR /m a in .m ap '';
> show _int(V (1, 1, 1, 1, - 4) , ' ' . ' ') ;

The result now contains masked expressions, e.g. f[67].Their value is stored in the
ICED directory tree. We can see the value of the masked expressions using the
routine:
show_f(i, R E SU L T S -D IR) ;
which displays the variable f[i] for the integer i. We must also provide the reduction
directory RESULTS_DIR For example, the value of f [12] can be retrieved by typing:

> show_f(1 2 , ' ' . ' ') ;

Moreover, the command

> s h o w _ fu ll_ in t(V (1 ,1 ,1 ,1 ,-4) , ' ' . ' ') ;

will return the full expression of the wanted integral. The commands show_int,
show _fu ll_ in t and show_f are very convenient to collect the results and export
them to other platforms for further calculations.

We proceed, next, with further reductions of integrals of the pentagon topology
with N _ < 5, and N+ = 0. To perform this reduction we have to prepare a run using
the same input file and requiring additional seeds generated in the script file,

> SEEDGEN("seeds.map", [1 ,2 ,3 ,4 ,5] , [2 , 5] , [0 , 5] , [0 , 0]) ;

The script runs now in approximately 25 minutes making use of 65MB of memory.
The coefficients involved are now larger, but they were computed very efficiently.

We have performed a number of reductions for one loop hexagon and heptagon
topologies and various two-loop topologies. For example, all loop and phase-space
integral topologies in [4, 6] are fully reduced in less than 6 hours. The reduction of
the massless double box topology with N _ < 4, and N+ = 0 can be performed in
about three days; the Reducer routine was running for approximately 7 hours, the
t i d y _ l i s t routine went through in one hour and ten minutes, while the m elt_ a ll_ f
routine worked for a couple of days. The cross-box massless box topology is reduced
in approximately four days. In massive two-loop topologies, we have reduced integral
topologies for the production of heavy quarks. The double-box topology with two
massive external legs and a massive propagator (all carrying the same mass) is re­
duced using the masking algorithms in about 32 hours while the nested substitutions
are completed in about 20 days for N - < 4, and N+ = 0.

20

8. C onclusions

We have presented a MAPLE program for A utom ated Integral Reductions in per-
turbative calculations. Our program is based on an algorithm introduced by La-
porta [14], and uses the m ethod of Gauss elimination for solving large systems of
equations. The program can reduce generic loop or phase-space integrals or other
functions (like hypergeometric functions) which satisfy coupled algebraic identities.

The main obstacle in multiloop reductions is the large size of the symbolic ex­
pressions. We have implemented two algorithms in our program which organize the
reduction more efficiently and reduce the amount of computations. The routines
mask reduced expressions or large integral coefficients. This enables solving the
system of IBP equations without performing all substitutions explicitly. The compu­
tationally intensive task of nested substitutions is performed only after the procedure
of Gauss-elimination is completed, and for only a small fraction of expressions which
appear in the final results.

Reduction algorithms cannot be extended to arbitrarily large calculations due
to finite computing resources. We believe, however, tha t many phenomenologically
interesting problems are tractable using AIR. There are a few improvements tha t
we expect to make in future releases, implementing a more flexible database for
storing the equations, and including more efficient algorithms for performing nested
substitutions and simplifying large expressions. The methods described in [28] are
appropriate for achieving this goal.

A cknow ledgm ents

We are grateful to Frank Petriello for very valuable suggestions, crucial observations,
and for his contributions in developing parts of AIR. We would like to thank Lee
Garland, Nigel Glover, Thanos Koukoutsakis, Carlo Oleari, and Maria Elena Tejeda-
Yeomans for insightful discussions. We would also like to thank Alex Mitov for his
detailed feedback and valuable suggestions and Thomas Becher, Lance Dixon, Kirill
Melnikov and Marc Schreiber for their suggestions and encourangament.

21

R eferences

[1] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192, 159 (1981).

[2] F. V. Tkachov, Phys. Lett. B 100, 65 (1981).

[3] T. Gehrmann and E. Remiddi, Nucl. Phys. B 580, 485 (2000) [arXiv:hep-ph/9912329].

[4] C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220 (2002) [arXiv:hep-
ph/0207004].

[5] C. Anastasiou and K. Melnikov, Phys. Rev. D 67, 037501 (2003) [arXiv:hep-
ph/0208115].

[6] C. Anastasiou, L. Dixon and K. Melnikov, Nucl. Phys. Proc. Suppl. 116, 193 (2003)
[arXiv:hep-ph/0211141].

[7] C. Anastasiou, L. Dixon, K. Melnikov and F. Petriello, arXiv:hep-ph/0306192.

[8] C. Anastasiou, L. Dixon, K. Melnikov and F. Petriello, arXiv:hep-ph/0312266.

[9] S. G. Gorishnii, S. A. Larin, L. R. Surguladze and F. V. Tkachov, Comput. Phys.
Commun. 55, 381 (1989).

[10] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B 400, 379 (1997)
[arXiv:hep-ph/9701390].

[11] M. Steinhauser, Comput. Phys. Commun. 134, 335 (2001) [arXiv:hep-ph/0009029].

[12] V. A. Smirnov and O. L. Veretin, Nucl. Phys. B 566, 469 (2000) [arXiv:hep-
ph/9907385].

[13] C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi and J. B. Tausk, Nucl. Phys. B
580, 577 (2000) [arXiv:hep-ph/0003261].

[14] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000) [arXiv:hep-ph/0102033].

[15] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis and E. Remiddi,
Nucl. Phys. B 627, 107 (2002) [arXiv:hep-ph/0112081].

[16] C. Anastasiou, E. W. N. Glover and M. E. Tejeda-Yeomans, Nucl. Phys. B 629, 255
(2002) [arXiv:hep-ph/0201274].

[17] Y. Schroder, Nucl. Phys. Proc. Suppl. 116, 402 (2003) [arXiv:hep-ph/0211288].

[18] T. Becher and K. Melnikov, Phys. Rev. D 66, 074508 (2002) [arXiv:hep-ph/0207201].

[19] T. Becher and K. Melnikov, Nucl. Phys. Proc. Suppl. 116, 407 (2003) [arXiv:hep-
ph/0211215].

[20] R. Bonciani, P. Mastrolia and E. Remiddi, Nucl. Phys. B 661, 289 (2003) [arXiv:hep-
ph/0301170].

22

[21] C. Anastasiou, Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Rev. Lett. 91, 251602
(2003) [arXiv:hep-th/0309040].

[22] C. Anastasiou, L. J. Dixon, Z. Bern and D. A. Kosower, arXiv:hep-th/0402053.

[23] I. Blokland, A. Czarnecki, M. Slusarczyk and F. Tkachov, arXiv:hep-ph/0403221.

[24] MAPLE, http://www.maplesoft.com

[25] R. K. Ellis and J. C. Sexton, Nucl. Phys. B 269, 445 (1986).

[26] AIR, http://www.theorphys.sci.kun.nl/people/achilleas/air/air.php

[27] J. A. M. Vermaseren, arXiv:math-ph/0010025.

[28] S. Weinzierl, JHEP 0307, 052 (2003) [arXiv:hep-ph/0306248].

23

http://www.maplesoft.com
http://www.theorphys.sci.kun.nl/people/achilleas/air/air.php

