14 research outputs found

    The photoperiod dependent sulfonation of 12-hydroxyjasmonate establishes a link between jasmonates and the control of flowering

    Get PDF
    It recently has been shown that 12-hydroxyjasmonate and its sulfonated derivative occur naturally in A. thaliana (Gidda et al. , 2003). The enzyme catalyzing the sulfonation of 12-OHJA is encoded by the AtST2a gene, one of the 18 sulfotransferase (ST)-coding genes present in the A. thaliana genome (Gidda et al. , 2003). We demonstrate that 12-OHJA induces floral evocation in A. thaliana plants growing under inductive photoperiods and that this inducing activity is abolished by sulfonation under non-inductive photoperiods. We also demonstrate that CONSTANS , a putative transcription factor that accelerates flowering in response to long photoperiod, and TERMINAL FLOWER 2, a homolog of Drosophila heterochromatin-associated protein 1, which acts on meristem identity genes to repress the initiation of flowering, promote or repress flowering through the direct or indirect regulation of AtST2a expression. We, therefore, propose that AtST2a is a member of the photoperiod-dependent flower induction pathway downstream from CO and TFL2. In Nicotiana tabaccum 12-OHJA is found to participate in the determination of flower structures and regulates the expression of NtPLE36 , a flower organ identity gene. The A. thaliana genome contains a sequence ( AtST2b ) that is closely related to AtST2a . The deduced amino acid sequences of the two genes share 85% identity and 92% similarity. Despite this high level of similarity AtST2b did not accept 12-OHJA as substrate. Transgenic plants overexpressing AtST2b in sense or antisense orientation, as well as AtST2b knock out mutant plants did not show a visible phenotype suggesting that the role of AtST2b in Arabidopsis thaliana is different from AtST2a

    Drosophila innate immunity and response to fungal infections.

    Get PDF
    The fruit fly Drosophila melanogaster is an important model for the analysis of the interaction between host immune systems and fungal pathogens. Recent experiments have extended our understanding of the Toll-based signalling pathway critical to response to fungal infections, and identified new elements involved in cellular and humoral-based defences. The fly immune system shows remarkable sophistication in its ability to discriminate among pathogens, and the powerful genetics available to researchers studying the adult fly response, and the ability to manipulate cultured phagocytic cell lines with RNAi, are allowing researchers to dissect the molecular details of the process

    A Human-Curated Annotation of the Candida albicans Genome

    Get PDF
    Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications

    Drosophila innate immunity and response to fungal infections

    No full text
    The fruit fly Drosophila melanogaster is an important model for the analysis of the interaction between host immune systems and fungal pathogens. Recent experiments have extended our understanding of the Toll-based signalling pathway critical to response to fungal infections, and identified new elements involved in cellular and humoral-based defences. The fly immune system shows remarkable sophistication in its ability to discriminate among pathogens, and the powerful genetics available to researchers studying the adult fly response, and the ability to manipulate cultured phagocytic cell lines with RNAi, are allowing researchers to dissect the molecular details of the processNRC publication: Ye

    Positions of Trp Codons in the Leader Peptide-Coding Region of the at Operon Influence Anti-Trap Synthesis and trp Operon Expression in Bacillus licheniformis▿

    No full text
    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNATrp. Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNATrp. In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNATrp deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis

    Transcriptional Activation Domains of the Candida albicans Gcn4p and Gal4p Homologs

    No full text
    Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C(6) zinc cluster (Gal4p) families; C. albicans has C. albicans Gcn4p (CaGcn4p) and CaGal4p with DNA binding domains highly similar to their S. cerevisiae counterparts. Deletion analysis of the CaGcn4p protein shows that the N′ terminus is needed for transcriptional activation; an 81-amino-acid region is critical for this function, and this domain can be coupled to a lexA DNA binding module to provide transcription-activating function in a heterologous reporter system. Deletion analysis of the C. albicans Gal4p identifies a C-terminal 73-amino-acid-long transcription-activating domain that also can be transferred to a heterologous reporter construct to direct transcriptional activation. These two transcriptional activation regions show no sequence similarity to the respective domains in their S. cerevisiae homologs, and the two C. albicans transcription-activating domains themselves show little similarity

    Drosophila melanogaster Y Chromosome Genes Affect Male Sensitivity to Microbial Infections

    No full text
    The genders of Drosophila melanogaster vary in their sensitivities to microbial pathogens. While many of the immunity-related genes are located on the X chromosome, the polymorphisms within the Y chromosome were also shown to affect the immunity of flies. In this study, we investigated the necessity of individual genes on the Y chromosome (Y-genes) for male sensitivity to microbes. We identified several Y-genes whose genetic inactivation either increases or decreases the sensitivity of males to gastrointestinal infections with fungal Saccharomyces cerevisiae and bacterial Serratia liquefaciens. Specifically, the loss of function mutations in fly kl-5 and Ppr-Y Y-genes lead to increased and decreased sensitivity of males to fungal challenge, respectively, compared to female sensitivity. In contrast, mutations in Drosophila Pp1-Y1, kl-5, kl-3, Ppr-Y, CCY, and FDY Y-genes lead to increased sensitivity of males to bacterial infection, compared to females. Moreover, while these Y-genes are necessary, the Y chromosome is not sufficient for the sensitivity of males to microbes, since the sensitivity of XXY females to fungal and bacterial challenges was not different from the sensitivity of wild-type female flies, compared to males. This study assigns a new immunity-related function to numerous Y-genes in D.melanogaster

    Transcriptional rewiring of fungal galactose-metabolism circuitry

    No full text
    BACKGROUND: The Leloir-pathway genes encode the enzymatic machinery involved in the metabolism of galactose. RESULTS: In the distantly related fungi Saccharomyces cerevisiae and Candida albicans, the genes encoding these enzymes are syntenically arranged, but the upstream regulatory regions are highly divergent. In S. cerevisiae, the Leloir-pathway genes are positively regulated by Gal4p acting through the UAS(G) sequence CGG(N(11))CCG. However, in C. albicans, the Gal4p and UAS(G) combination is found to regulate genes unrelated to galactose metabolism. We identified a palindromic sequence that acts to control GAL10 expression in C. albicans in the presence of galactose. This palindrome is found upstream of other Leloir-pathway genes in C. albicans, and in the absence of other regulatory sequences, activation of expression through this sequence in the presence of galactose requires Cph1p, the homolog of the Ste12p transcription factor of S. cerevisiae. CONCLUSIONS: Although the cellular process of galactose induction of the Leloir pathway is conserved between the two organisms, the regulatory circuits achieving the cellular process are completely distinctNRC publication: Ye

    Anthrax toxin component, Protective Antigen, protects insects from bacterial infections.

    No full text
    Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA83), binds to cell-surface receptors and is cleaved by furin into an evolutionary-conserved PA20 and a pore-forming PA63 subunits. We show that PA20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA83 loop known to be cleaved by furin to release PA20 from PA63 is, in part, responsible for the PA20-mediated protection. We found that PA20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA20-mediated protection of infected flies. This effect of PA20 on innate immunity may also exist in mammals: we show that PA20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens
    corecore