22 research outputs found

    Maternal phylogenetic relationships and genetic variation among Arabian horse populations using whole mitochondrial DNA D-loop sequencing

    Get PDF
    BACKGROUND: Maternal inheritance is an essential point in Arabian horse population genetics and strains classification. The mitochondrial DNA (mtDNA) sequencing is a highly informative tool to investigate maternal lineages. We sequenced the whole mtDNA D-loop of 251 Arabian horses to study the genetic diversity and phylogenetic relationships of Arabian populations and to examine the traditional strain classification system that depends on maternal family lines using native Arabian horses from the Middle East. RESULTS: The variability in the upstream region of the D-loop revealed additional differences among the haplotypes that had identical sequences in the hypervariable region 1 (HVR1). While the American-Arabians showed relatively low diversity, the Syrian population was the most variable and contained a very rare and old haplogroup. The Middle Eastern horses had major genetic contributions to the Western horses and there was no clear pattern of differentiation among all tested populations. Our results also showed that several individuals from different strains shared a single haplotype, and individuals from a single strain were represented in clearly separated haplogroups. CONCLUSIONS: The whole mtDNA D-loop sequence was more powerful for analysis of the maternal genetic diversity in the Arabian horses than using just the HVR1. Native populations from the Middle East, such as Syrians, could be suggested as a hot spot of genetic diversity and may help in understanding the evolution history of the Arabian horse breed. Most importantly, there was no evidence that the Arabian horse breed has clear subdivisions depending on the traditional maternal based strain classification system

    The cartilage matrisome in adolescent idiopathic scoliosis

    Get PDF
    The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility

    CELSR2 is a candidate susceptibility gene in idiopathic scoliosis

    Get PDF
    A Swedish pedigree with an autosomal dominant inheritance of idiopathic scoliosis was initially studied by genetic linkage analysis, prioritising genomic regions for further analysis. This revealed a locus on chromosome 1 with a putative risk haplotype shared by all affected individuals. Two affected individuals were subsequently exome-sequenced, identifying a rare, non-synonymous variant in the CELSR2 gene. This variant is rs141489111, a c. G6859A change in exon 21 (NM_001408), leading to a predicted p. V2287I (NP_001399.1) change. This variant was found in all affected members of the pedigree, but showed reduced penetrance. Analysis of tagging variants in CELSR1-3 in a set of 1739 Swedish-Danish scoliosis cases and 1812 controls revealed significant association (p = 0.0001) to rs2281894, a common synonymous variant in CELSR2. This association was not replicated in case-control cohorts from Japan and the US. No association was found to variants in CELSR1 or CELSR3. Our findings suggest a rare variant in CELSR2 as causative for idiopathic scoliosis in a family with dominant segregation and further highlight common variation in CELSR2 in general susceptibility to idiopathic scoliosis in the Swedish-Danish population. Both variants are located in the highly conserved GAIN protein domain, which is necessary for the auto-proteolysis of CELSR2, suggesting its functional importance.Peer reviewe

    Genetic association and characterization of FSTL5 in isolated clubfoot

    Get PDF
    ACKNOWLEDGEMENTS: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). The authors thank the staff and participants of the ARIC study for their important contributions. Funding for GENEVA was provided by National Human Genome Research Institute grant U01HG004402 (E.Boerwinkle). We thank H. Hobbs and J. Cohen for contributing control samples for replication genotyping, Nadav Ahituv for sharing RNA-seq data for both bat and mouse embryonic limb buds, Tommy Hyatt for designing the custom genotyping assay, and members of the UT Southwestern Transgenic Core facility, including John Ritter, Mylinh Nguyen, and Robert Hammer. Publicly available mouse embryonic expression analysis results were provided online at https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/landing (24). The authors acknowledge the contributions and support of the Center for Excellence in Clubfoot Research at Scottish Rite for Children, including Shawne Faulks and Kristhen Atala. Fstl5 mutant rats were produced by the NIH Mutant Rat Resource at UT Southwestern Medical Center (R24RR03232601, R24OD011108, R01HD036022, and (5R01HD053889). This study was supported by funding from the Scottish Rite for Children Research Fund (J.J.R.), Shriners Hospital for Children (J.T.H), and the National Institutes of Health award R01HD043342 (J.T.H.).Peer reviewedPostprin

    Y-Chromosomal Insights into Breeding History and Sire Line Genealogies of Arabian Horses

    Get PDF
    The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.Peer Reviewe

    Evidence of causality of low body mass index on risk of adolescent idiopathic scoliosis: a Mendelian randomization study

    Get PDF
    IntroductionAdolescent idiopathic scoliosis (AIS) is a disorder with a three-dimensional spinal deformity and is a common disease affecting 1-5% of adolescents. AIS is also known as a complex disease involved in environmental and genetic factors. A relation between AIS and body mass index (BMI) has been epidemiologically and genetically suggested. However, the causal relationship between AIS and BMI remains to be elucidated.Material and methodsMendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWASs) of AIS (Japanese cohort, 5,327 cases, 73,884 controls; US cohort: 1,468 cases, 20,158 controls) and BMI (Biobank Japan: 173430 individual; meta-analysis of genetic investigation of anthropometric traits and UK Biobank: 806334 individuals; European Children cohort: 39620 individuals; Population Architecture using Genomics and Epidemiology: 49335 individuals). In MR analyses evaluating the effect of BMI on AIS, the association between BMI and AIS summary statistics was evaluated using the inverse-variance weighted (IVW) method, weighted median method, and Egger regression (MR-Egger) methods in Japanese.ResultsSignificant causality of genetically decreased BMI on risk of AIS was estimated: IVW method (Estimate (beta) [SE] = -0.56 [0.16], p = 1.8 × 10-3), weighted median method (beta = -0.56 [0.18], p = 8.5 × 10-3) and MR-Egger method (beta = -1.50 [0.43], p = 4.7 × 10-3), respectively. Consistent results were also observed when using the US AIS summary statistic in three MR methods; however, no significant causality was observed when evaluating the effect of AIS on BMI.ConclusionsOur Mendelian randomization analysis using large studies of AIS and GWAS for BMI summary statistics revealed that genetic variants contributing to low BMI have a causal effect on the onset of AIS. This result was consistent with those of epidemiological studies and would contribute to the early detection of AIS

    Genetic Diversity and Population Structure of the Arabian Horse Populations from Syria and other Countries

    Get PDF
    Humans and horses weaved together wonderful stories of adventure and generosity. As a part of human history and civilization, Arabian horses ignite imagination throughout the world. Populations of this breed exist in many countries. Here I explored different populations of Arabians representing Middle Eastern and Western populations. The main two aims of this study were to provide the genetic diversity description of Arabians from different origins and to examine the traditional classification system of the breed. A third aim was to tackle the distribution pattern of the genetic variability within the genome to show whether there are differences in relative variability of different types of markers. First, I analyzed the genetic structure of 537Arabian horses from seven populations by using microsatellites. The results consistently showed higher levels of diversity within the Middle Eastern populations compared to the Western populations. All American-Arabians showed differentiation from Middle Eastern populations. Second, I sequenced the whole mtDNA D-loop of 251 Arabian horses. The whole D-loop sequence was more informative than using just the HVR1. Native populations from the Middle East, such as Syrian, represented a hot spot of genetic diversity. Most importantly, there was no evidence that the Arabian horse breed has clear subdivisions depending on the traditional maternal based strain classification system. Third, I tested the heterozygosity distribution pattern along the genome of 22 Peruvian Paso horses using 232 microsatellites and Single Nucleotide Polymorphisms (SNPs). The pattern of genetic diversity was completely different between these two markers where no correlation was found. Runs of homozygosity test of SNPs and associated microsatellites noticeably showed that all of associated microsatellites loci were homozygous in the matched case. The findings of this study will help in understanding the evolutionary history and developing breeding and conservation programs of horses. This study provided databases including parentage testing system and maternal lineages that will help to recover the Syrian Arabian population after the armed conflict started in Syria in 2011. The results here can be applied not only to horses, but also to other animal species with similar criteria

    Genetic Characterization of Cleveland Bay Horse Breed

    No full text
    The Cleveland Bay (CB) is the United Kingdom’s oldest established horse breed. In this study we analyzed the genetic variability in CB horses and investigated its genetic relationships with other horse breeds. We examined the genetic variability among 90 CB horses sampled in the USA compared to a total of 3447 horses from 59 other breeds. Analysis of the genetic diversity and population structure was carried out using 15 microsatellite loci. We found that genetic diversity in CB horses was less than that for the majority of other tested breeds. The genetic similarity measures showed no direct relationship between the CB and Thoroughbred but suggested the Turkman horses (likely in the lineage of ancestors of the Thoroughbred) as a possible ancestor. Our findings reveal the genetic uniqueness of the CB breed and indicate its need to be preserved as a genetic resource

    Interrogating Causal Effects of Body Composition and Puberty‐Related Risk Factors on Adolescent Idiopathic Scoliosis: A Two‐Sample Mendelian Randomization Study

    No full text
    ABSTRACT Adolescent idiopathic scoliosis (AIS) is the most common form of pediatric musculoskeletal disorder. Observational studies have pointed to several risk factors for AIS, but almost no evidence exists to support their causal association with AIS. Here, we applied Mendelian randomization (MR), known to limit bias from confounding and reverse causation, to investigate causal associations between body composition and puberty‐related exposures and AIS risk in Europeans and Asians. For our two‐sample MR studies, we used single nucleotide polymorphisms (SNPs) associated with body mass index (BMI), waist‐hip ratio, lean mass, childhood obesity, bone mineral density (BMD), 25‐hydroxyvitamin D (25OHD), age at menarche, and pubertal growth in large European genome‐wide association studies (GWAS), and with adult osteoporosis risk and age of menarche in Biobank Japan. We extracted estimates of the aforementioned SNPs on AIS risk from the European or Asian subsets of the largest multiancestry AIS GWAS (N = 7956 cases/88,459 controls). The results of our inverse variance‐weighted (IVW) MR estimates suggest no causal association between the aforementioned risk factors and risk of AIS. Pleiotropy‐sensitive MR methods yielded similar results. However, restricting our analysis to European females with AIS, we observed a causal association between estimated BMD and the risk of AIS (IVW odds ratio for AIS = 0.1, 95% confidence interval 0.01 to 0.7, p = 0.02 per SD increase in estimated BMD), but this association was no longer significant after adjusting for BMI, body fat mass, and 25OHD and remained significant after adjusting for age at menarche in multivariable MR. In conclusion, we demonstrated a protective causal effect of BMD on AIS risk in females of European ancestry, but this effect was modified by BMI, body fat mass, and 25OHD levels. Future MR studies using larger AIS GWAS are needed to investigate small effects of the aforementioned exposures on AIS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research
    corecore