59 research outputs found

    DNA Methylation Pyrosequencing Assay Is Applicable for the Assessment of Epigenetic Active Environmental or Clinical Relevant Chemicals

    Get PDF
    Exposure of cells and organisms to stressors might result in epigenetic changes. Here it is shown that investigation of DNA methylation using pyrosequencing is an alternative for in vitro and in vivo toxicological testing of epigenetic effects induced by chemicals and drugs. An in vitro evaluation of global and CpG site specific DNA methylation upon treatment of cells with chemicals/drugs is shown. Bisulfite genomic sequencing of methylation controls showed high methylation of LINE1 in methylation positive control and low methylation in the negative controls. The CpG sites within the LINE1 element are methylated at different levels. In vitro cell cultures show a methylation level ranging from 56% to 49%. Cultures of drug resistant tumor cells show significant hypomethylation as compared with the originating nonresistant tumor cells. The in vitro testing of epigenetically active chemicals (5-methyl-2’-deoxycytidine and trichostatin A) revealed a significant change of LINE1 methylation status upon treatment, while specific CpG sites were more prone to demethylation than others (focal methylation). In conclusion, DNA methylation using pyrosequencing might be used not only for testing epigenetic toxins/drugs but also in risk assessment of drugs, food, and environmental relevant pollutants

    Arsenic trioxide (As2O3) interacts with [Ca2+]i of human SY-5Y neuroblastoma and human embryonic kidney 293 (HEK) cells and induces cytotoxicity

    Get PDF
    Arsenic trioxide (As2O3) is an anticancer drug used in humans to treat some forms of cancer. However its clinical application could also result in secondary effects such as neuro-, hepato- or nephro-toxicity. As2O3 interactions with cells are not fully understood, but effects on calcium signalling could be a major factor of As2O3 interactions with living cells. In this work it was investigated whether As2O3 influences the intracellular calcium ([Ca2+]i) homeostasis in two human derived cells lines: human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293) and whether As2O3 induced [Ca2+]i modifications are related to cytotoxicity. To measure Ca2+ changes during the application of As2O3 calcium sensitive dyes (fluo-4 and rhod-2) were used combined with laser scanning microscopy or fluorescence activated cell sorting. In addition cytotoxicity tests were employed (Trypan blue extrusion and MTT assays). As2O3 (1 ”M) increased [Ca2+]i in SY-5Y and HEK 293 cells. Three forms of [Ca2+]i elevations were found: (1) steady-state increases, (2) transient [Ca2+]i–elevations and (3) Ca2+-spikes. [Ca2+]i modifications were independent from extracellular Ca2+ but dependent on internal calcium stores. The effect was not reversible. As2O3 is able to modulate calcium signalling even with a low concentration of 100 pM. Steady state increase of [Ca2+]i and calcium-spikes were observed. Calcium rise depended on time and drug concentration. Inositol triphosphate (IP3) and ryanodine (Ry) receptors are involved in regulation of calcium signals induced by As2O3. In addition, cyclosporine A sensitive calcium pools are similarly modulated in neuroblastoma and HEK cells, while the caffeine and ryanodine sensitive calcium pools are differentially regulated in the two cell line. In cytotoxicity tests As2O3 (1”M) significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage with 1”M As2O3. Lower concentrations have a specific apoptotic effect for neuroblastoma cells but not for HEK cells. The data suggest that [Ca2+]i is an important messenger in As2O3 induced cell death and that low concentrations of As2O3 are able to interfere with physiological processes in diverse cell models

    Metals and Disease

    Get PDF

    Information Systems in University Learning

    Get PDF
    The authors of this article are going to bring into light the significance, the place and the role of information systems in the university education process. At the same time they define the objectives and the target group of the subject named Economic Information Systems and state the competence gained by students by studying this subject. Special attention is given to the curriculum to be taught to students and to a suggestive enumeration of a series of economic applications that can be themes for laboratory practice and for students’ dissertation (graduation thesis).Information System, Academic Partnership, Curriculum, General Competence, Specific Competence, Open Systems

    Information Systems in University Learning

    Get PDF
    The authors of this article are going to bring into light the significance, the place and the role of information systems in the university education process. At the same time they define the objectives and the target group of the subject named Economic Information Systems and state the competence gained by students by studying this subject. Special attention is given to the curriculum to be taught to students and to a suggestive enumeration of a series of economic applications that can be themes for laboratory practice and for students’ dissertation (graduation thesis)

    Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma

    Get PDF
    Glioblastomas are incurable malignant primary brain tumours. Wirsching etal. investigate the effects of altered expression of thymosin beta 4 (TB4), a polypeptide implicated in neural development and wound healing, in glioma models. TB4 silencing inhibited migration and invasion of glioma cells invitro, and enhanced survival of glioma-bearing mic

    Molecular identification of trichostrongylus axei on European brown hare (Lepus Europaeus) in Western Romania - case report

    Get PDF
    Trichostrongylosis is a cosmopolitan parasitic disease affecting domestic and wild ruminants, equines, and last but not least, leporids. Three species of strongyles commonly parasitize the digestive tracts of leporids, the most prevalent being Trichostrongylus retortaeformis. This paper describes the first case of Trichostrongylus axei infestation in a wild hare in western Romania. A female wild hare carcass found in Timis County was examined at the Parasiology Department of the Faculty of Veterinary Medicine in Timisoara. A clinical, post-mortem and PCR examination was performed to establish a diagnosis, with molecular analysis confirming the presence of the nematode Trichostrongylus axei in European brown hare

    Enological potential of native yeasts isolated from grapes in Iasi wine district, Romania

    Get PDF
    Spontaneous alcoholic fermentation and the quality of a wines depends on the microbial communities present of the grapes and the external physical variables. Grapevine cultivar, viticultural practices, macro- and microclimatic conditions, and the vineyards geographic location all have an impact on the biological activities of fermenting microorganisms which prevail on the surface of grape berries. The taste and organoleptic features of wines are heavily influenced by the microbial communities present during grape must fermentation. The goal of this study was to isolate and select yeast strains with good enological traits for use as regional starter cultures and, as a result, to generate wines with specific sensory characteristics that can be connected to terroir of Iasi vineyards. After isolation and purification from different grape varieties, in order to determine their ecologically important properties, 9 indigenous yeasts strains were selected and have been tested in the laboratory for rate of fermentation, foam production, capacity to consume sugars from must and alcoholic capacity. After the testing procedures (micro-fermentations at 25°C), 4 yeasts strains (SCZ, SCH, CHC3 and GB3) were retained and could be used as future starters after further tests in large scale fermentations, in order to optimize the fermentation processes and to obtain quality wines from IaƟi viticultural area

    Intracellular Calcium Disturbances Induced by Arsenic and Its Methylated Derivatives in Relation to Genomic Damage and Apoptosis Induction

    Get PDF
    Arsenic and its methylated derivatives are contaminants of air, water, and food and are known as toxicants and carcinogens. Arsenic compounds are also being used as cancer chemotherapeutic agents. In humans, inorganic arsenic is metabolically methylated to mono-, di-, and trimethylated forms. Recent findings suggest that the methylation reactions represent a toxification rather than a detoxification pathway. In recent years, the correlation between arsenic exposure, cytotoxicity and genotoxicity, mutagenicity, and tumor promotion has been established, as well as the association of arsenic exposure with perturbation of physiologic processes, generation of reactive oxygen species, DNA damage, and apoptosis induction. Trivalent forms of arsenic have been found to induce apoptosis in several cellular systems with involvement of membrane-bound cell death receptors, activation of caspases, release of calcium stores, and changes of the intracellular glutathione level. It is well known that calcium ion deregulation plays a critical role in apoptotic cell death. A calcium increase in the nuclei might lead to toxic effects in the cell. In this review, we highlight the relationship between induced disturbances of calcium homeostasis, genomic damage, and apoptotic cell death caused by arsenic and its organic derivatives

    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts

    Get PDF
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging
    • 

    corecore